English

Prove the Following Identities Cos X 1 − Sin X = 1 + Cos X + Sin X 1 + Cos X − Sin X - Mathematics

Advertisements
Advertisements

Question

Prove the following identities
\[\frac{\cos x}{1 - \sin x} = \frac{1 + \cos x + \sin x}{1 + \cos x - \sin x}\]

Solution

\[\text{ RHS }= \frac{1 + \cos x + \sin x}{1 + \cos x - \sin x}\]
\[ = \frac{\left( 1 + \cos x \right) + \left( \sin x \right)}{\left( 1 + cosx \right) - \left( \sin x \right)}\]
\[ = \frac{\left[ \left( 1 + \cos x \right) + \left( \sin x \right) \right]\left[ \left( 1 + \cos x \right) + \left( \sin x \right) \right]}{\left[ \left( 1 + \cos x \right) - \left( \sin x \right) \right]\left[ \left( 1 + \cos x \right) + \left( \sin x \right) \right]}\]
\[ = \frac{\left[ \left( 1 + \cos x \right) + \left( \sin x \right) \right]^2}{\left( 1 + \cos x \right)^2 - \left( \sin x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)^2 + \left( \sin x \right)^2 + 2\left( 1 + \cos x \right)\left( \sin x \right)}{1^2 + \cos^2 x + 2 \times 1 \times \cos x - \sin^2 x}\]
\[ = \frac{1 + \cos^2 x + 2\cos x + \sin^2 x + 2\sin x \cos x + 2\sin x}{1 + \cos^2 x + 2\cos x - \sin^2 x}\]
\[ = \frac{1 + \left( \sin^2 x + \cos^2 x \right) + 2\cos x + 2\sin x \cos x + 2\sin x}{\left( 1 - \sin^2 x \right) + \cos^2 x + 2\cos x}\]
\[ = \frac{1 + 1 + 2\cos x + 2\sin x \cos x + 2\sin x}{\cos^2 x + \cos^2 x + 2\cos x}\]
\[ = \frac{2 + 2\cos x + 2\sin x \cos x + 2\sin x}{2 \cos^2 x + 2\cos x}\]
\[ = \frac{1 + \cos x + \sin x \cos x + \sin x}{\cos^2 x + \cos x}\]
\[ = \frac{1\left( 1 + \cos x \right) + \sin x\left( \cos x + 1 \right)}{\cos x\left( \cos x + 1 \right)}\]
\[ = \frac{\left( \cos x + 1 \right)\left( 1 + \sin x \right)}{\cos x\left( cosx + 1 \right)}\]
\[ = \frac{\left( 1 + \sin x \right)}{\cos x}\]
\[ = \frac{\left( 1 + \sin x \right) \times \cos x}{\cos x \times \cos x}\]
\[ = \frac{\left( 1 + \sin x \right) \times \cos x}{\cos^2 x}\]
\[ = \frac{\left( 1 + \sin x \right) \times \cos x}{1 - \sin^2 x}\]
\[ = \frac{\left( 1 + \sin x \right) \times \cos x}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)}\]
\[ = \frac{\cos x}{1 - \sin x}\]
 = LHS
Hence proved.

shaalaa.com
Trigonometric Functions - Truth of the Identity
  Is there an error in this question or solution?
Chapter 5: Trigonometric Functions - Exercise 5.1 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 5 Trigonometric Functions
Exercise 5.1 | Q 9 | Page 18

RELATED QUESTIONS

Prove the following identites

sec4x - sec2x = tan4x + tan2x


Prove the following identities
\[\sin^6 x + \cos^6 x = 1 - 3 \sin^2 x \cos^2 x\]


Prove the following identities
\[\left( cosec x - \sin x \right) \left( \sec x - \cos x \right) \left( \tan x + \cot x \right) = 1\]


Prove the following identities 
\[cosec x \left( \sec x - 1 \right) - \cot x \left( 1 - \cos x \right) = \tan x - \sin x\]


Prove the following identities
\[\frac{1 - \sin x \cos x}{\cos x \left( \sec x - cosec x \right)} \cdot \frac{\sin^2 x - \cos^2 x}{\sin^3 x + \cos^3 x} = \sin x\]


Prove the following identities
\[\frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} + \frac{\sin^3 x - \cos^3 x}{\sin x - \cos x} = 2\]


Prove the following identities
\[\left( \sec x \sec y + \tan x \tan y \right)^2 - \left( \sec x \tan y + \tan x \sec y \right)^2 = 1\]


Prove the following identities

\[\frac{\tan^3 x}{1 + \tan^2 x} + \frac{\cot^3 x}{1 + \cot^2 x} = \frac{1 - 2 \sin^2 x \cos^2 x}{\sin x \cos x}\]

Prove the following identities
\[1 - \frac{\sin^2 x}{1 + \cot x} - \frac{\cos^2 x}{1 + \tan x} = \sin x \cos x\]


Prove the following identities

\[\left( \frac{1}{\sec^2 x - \cos^2 x} + \frac{1}{{cosec}^2 x - \sin^2 x} \right) \sin^2 x \cos^2 x = \frac{1 - \sin^2 x \cos^2 x}{2 + \sin^2 x \cos^2 x}\]

 


Prove the following identities
\[\left( 1 + \tan \alpha \tan \beta \right)^2 + \left( \tan \alpha - \tan \beta \right)^2 = \sec^2 \alpha \sec^2 \beta\]


Prove the following identities

\[\frac{\left( 1 + \cot x + \tan x \right) \left( \sin x - \cos x \right)}{\sec^3 x - {cosec}^3 x} = \sin^2 x \cos^2 x\]

 


Prove the following identities 

\[\frac{2 \sin x \cos x - \cos x}{1 - \sin x + \sin^2 x - \cos^2 x} = \cot x\]

 


Prove the following identities

\[\cos x \left( \tan x + 2 \right) \left( 2 \tan x + 1 \right) = 2 \sec x + 5 \sin x\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×