Advertisements
Advertisements
Question
Prove the following identities
\[\frac{\cos x}{1 - \sin x} = \frac{1 + \cos x + \sin x}{1 + \cos x - \sin x}\]
Solution
\[\text{ RHS }= \frac{1 + \cos x + \sin x}{1 + \cos x - \sin x}\]
\[ = \frac{\left( 1 + \cos x \right) + \left( \sin x \right)}{\left( 1 + cosx \right) - \left( \sin x \right)}\]
\[ = \frac{\left[ \left( 1 + \cos x \right) + \left( \sin x \right) \right]\left[ \left( 1 + \cos x \right) + \left( \sin x \right) \right]}{\left[ \left( 1 + \cos x \right) - \left( \sin x \right) \right]\left[ \left( 1 + \cos x \right) + \left( \sin x \right) \right]}\]
\[ = \frac{\left[ \left( 1 + \cos x \right) + \left( \sin x \right) \right]^2}{\left( 1 + \cos x \right)^2 - \left( \sin x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)^2 + \left( \sin x \right)^2 + 2\left( 1 + \cos x \right)\left( \sin x \right)}{1^2 + \cos^2 x + 2 \times 1 \times \cos x - \sin^2 x}\]
\[ = \frac{1 + \cos^2 x + 2\cos x + \sin^2 x + 2\sin x \cos x + 2\sin x}{1 + \cos^2 x + 2\cos x - \sin^2 x}\]
\[ = \frac{1 + \left( \sin^2 x + \cos^2 x \right) + 2\cos x + 2\sin x \cos x + 2\sin x}{\left( 1 - \sin^2 x \right) + \cos^2 x + 2\cos x}\]
\[ = \frac{1 + 1 + 2\cos x + 2\sin x \cos x + 2\sin x}{\cos^2 x + \cos^2 x + 2\cos x}\]
\[ = \frac{2 + 2\cos x + 2\sin x \cos x + 2\sin x}{2 \cos^2 x + 2\cos x}\]
\[ = \frac{1 + \cos x + \sin x \cos x + \sin x}{\cos^2 x + \cos x}\]
\[ = \frac{1\left( 1 + \cos x \right) + \sin x\left( \cos x + 1 \right)}{\cos x\left( \cos x + 1 \right)}\]
\[ = \frac{\left( \cos x + 1 \right)\left( 1 + \sin x \right)}{\cos x\left( cosx + 1 \right)}\]
\[ = \frac{\left( 1 + \sin x \right)}{\cos x}\]
\[ = \frac{\left( 1 + \sin x \right) \times \cos x}{\cos x \times \cos x}\]
\[ = \frac{\left( 1 + \sin x \right) \times \cos x}{\cos^2 x}\]
\[ = \frac{\left( 1 + \sin x \right) \times \cos x}{1 - \sin^2 x}\]
\[ = \frac{\left( 1 + \sin x \right) \times \cos x}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)}\]
\[ = \frac{\cos x}{1 - \sin x}\]
= LHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identites
sec4x - sec2x = tan4x + tan2x
Prove the following identities
\[\sin^6 x + \cos^6 x = 1 - 3 \sin^2 x \cos^2 x\]
Prove the following identities
\[\left( cosec x - \sin x \right) \left( \sec x - \cos x \right) \left( \tan x + \cot x \right) = 1\]
Prove the following identities
\[cosec x \left( \sec x - 1 \right) - \cot x \left( 1 - \cos x \right) = \tan x - \sin x\]
Prove the following identities
\[\frac{1 - \sin x \cos x}{\cos x \left( \sec x - cosec x \right)} \cdot \frac{\sin^2 x - \cos^2 x}{\sin^3 x + \cos^3 x} = \sin x\]
Prove the following identities
\[\frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} + \frac{\sin^3 x - \cos^3 x}{\sin x - \cos x} = 2\]
Prove the following identities
\[\left( \sec x \sec y + \tan x \tan y \right)^2 - \left( \sec x \tan y + \tan x \sec y \right)^2 = 1\]
Prove the following identities
Prove the following identities
\[1 - \frac{\sin^2 x}{1 + \cot x} - \frac{\cos^2 x}{1 + \tan x} = \sin x \cos x\]
Prove the following identities
Prove the following identities
\[\left( 1 + \tan \alpha \tan \beta \right)^2 + \left( \tan \alpha - \tan \beta \right)^2 = \sec^2 \alpha \sec^2 \beta\]
Prove the following identities
Prove the following identities
Prove the following identities