Advertisements
Advertisements
Question
Prove the following identitie
Solution
\[\text{ LHS }= \frac{\tan x}{1 - \cot x} + \frac{\cot x}{1 - \tan x}\]
\[ = \frac{\frac{\sin x}{\cos x}}{1 - \frac{\cos x}{\sin x}} + \frac{\frac{\cos x}{\sin x}}{1 - \frac{\sin x}{\cos x}}\]
\[ = \frac{\frac{\sin x}{\cos x}}{\frac{\sin x - \cos x}{\sin x}} + \frac{\frac{\cos x}{\sin x}}{\frac{\cos x - \sin x}{\cos x}}\]
\[ = \frac{\sin x}{\cos x} \times \frac{\sin x}{\sin x - \cos x} + \frac{\cos x}{\sin x} \times \frac{\cos x}{\cos x - \sin x}\]
\[ = \frac{\sin x}{\cos x} \times \frac{\sin x}{\sin x - \cos x} + \frac{\cos x}{\sin x} \times \frac{\cos x}{- \left( \sin x - \cos x \right)}\]
\[ = \frac{\sin^2 x}{\cos x\left( \sin x - \cos x \right)} - \frac{\cos^2 x}{\sin x\left( \sin x - \cos x \right)}\]
\[ = \frac{\sin^3 x - \cos^3 x}{\sin x \cos x\left( \sin x - \cos x \right)}\]
\[ = \frac{\left( \sin x - \cos x \right)\left[ \sin^2 x + \cos^2 x + \sin x\cos x \right]}{\sin x \cos x\left( \sin x - \cos x \right)}\]
\[ = \frac{1 \times \left[ 1 + \sin x \cos x \right]}{\sin x \cos x}\]
\[ = \frac{1 + \sin x \cos x}{\sin x \cos x}\]
\[ = \frac{1}{\sin x \cos x} + \frac{\sin x \cos x}{\sin x \cos x}\]
\[ = \frac{1}{\sin x} \times \frac{1}{\cos x} + 1\]
\[ = cosec x \times \sec x + 1\]
\[ = \left( \sec x co\sec x + 1 \right)\]
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identites
sec4x - sec2x = tan4x + tan2x
Prove the following identities
\[\sin^6 x + \cos^6 x = 1 - 3 \sin^2 x \cos^2 x\]
Prove the following identities
\[\left( cosec x - \sin x \right) \left( \sec x - \cos x \right) \left( \tan x + \cot x \right) = 1\]
Prove the following identities
\[cosec x \left( \sec x - 1 \right) - \cot x \left( 1 - \cos x \right) = \tan x - \sin x\]
Prove the following identities
\[\frac{1 - \sin x \cos x}{\cos x \left( \sec x - cosec x \right)} \cdot \frac{\sin^2 x - \cos^2 x}{\sin^3 x + \cos^3 x} = \sin x\]
Prove the following identities
\[\frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} + \frac{\sin^3 x - \cos^3 x}{\sin x - \cos x} = 2\]
Prove the following identities
\[\left( \sec x \sec y + \tan x \tan y \right)^2 - \left( \sec x \tan y + \tan x \sec y \right)^2 = 1\]
Prove the following identities
\[\frac{\cos x}{1 - \sin x} = \frac{1 + \cos x + \sin x}{1 + \cos x - \sin x}\]
Prove the following identities
Prove the following identities
\[1 - \frac{\sin^2 x}{1 + \cot x} - \frac{\cos^2 x}{1 + \tan x} = \sin x \cos x\]
Prove the following identities
Prove the following identities
\[\left( 1 + \tan \alpha \tan \beta \right)^2 + \left( \tan \alpha - \tan \beta \right)^2 = \sec^2 \alpha \sec^2 \beta\]
Prove the following identities
Prove the following identities
Prove the following identities