Advertisements
Advertisements
प्रश्न
Prove the theorem of perpendicular axes about the moment of inertia.
संख्यात्मक
उत्तर
Theorem of perpendicular axes
Proof: Let Oz be an axis perpendicular to the lamina's plane, and let Ox and Oy be two perpendicular axes in the lamina's plane. At point P(x, y), consider an infinitesimal mass element (dm) of the lamina. MI centred on the z-axis in the lamina
Iz = ∫ OP2 dm`
The element is perpendicular to the x - and y - axes, respectively, at a distance of y and x. Because of this, the lamina's moments of inertia about the x - and y -axes are, respectively,
Ix = ∫ y2 dm and Iy = ∫ x2 dm
Since OP2 = y2 + x2,
Iz = ∫ OP2 dm
= ∫ (y2 + x2) dm
= ∫ y2 dm + ∫ x2 dm
= ∴ Iz = Ix + Iy
This proves the theorem of perpendicular axes.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?