Advertisements
Advertisements
प्रश्न
प्रश्न में अवकल समीकरण की कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
y'' + (y')2 + 2y = 0
उत्तर
y″ + (y′)2 + 2y = 0
अंतर समीकरण में मौजूद उच्चतम-क्रम व्युत्पन्न y″ है।
इसलिए, इसका कोटि दो है।
दिया गया अंतर समीकरण y″ और y' में एक बहुपद समीकरण है और y″ तक बढ़ाई गई उच्चतम घात एक है।
इसलिए, इसकी घात एक है।
APPEARS IN
संबंधित प्रश्न
प्रश्न में अवकल समीकरण की कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
`(d^4 y)/(dx^4) + sin("y'''") = 0`
प्रश्न में अवकल समीकरण की कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
y' + 5y = 0
प्रश्न में अवकल समीकरण की कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
`((ds)/dt)^4 + 3s (d^2 s)/dt^2 = 0`
प्रश्न में अवकल समीकरण की कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
`((d^2 y)/dx^2)^2 + cos (dy/dx) = 0`
प्रश्न में अवकल समीकरण की कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
`(d^2 y)/dx^2 = cos 3x + sin 3x`
प्रश्न में अवकल समीकरण की कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
( y′′′) + (y″)3 + (y′)4 + y5 = 0
प्रश्न में अवकल समीकरण की कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
y′′′ + 2y″ + y′ = 0
प्रश्न में अवकल समीकरण की कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
y' + y = ex
प्रश्न में अवकल समीकरण की कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
y'' + 2y' + sin y = 0
अवकल समीकरण `((d^2y)/dx^2)^3 + (dy/dx)^2 + sin (dy/dx) + 1 = 0` की घात है:
अवकल समीकरण `2x^2 (d^2y)/dx^2 . 3 dy/dx + y = 0` की कोटि है:
निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
`(dy/dx)^3 - 4(dy/dx)^2 + 7y = sin x`
निम्नलिखित अवकल समीकरण में से कोटि एवं घात (यदि परिभाषित हो) ज्ञात कीजिए।
`(d^4y)/dx^4 - sin ((d^3y)/dx^3) = 0`