Advertisements
Advertisements
प्रश्न
Reduce the following rational expression to its lowest form
`("p"^2 - 3"p" - 40)/(2"p"^3 - 24"p"^2 + 64"p")`
उत्तर
`("p"^2 - 3"p" - 40)/(2"p"^3 - 24"p"^2 + 64"p")`
p2 – 3p – 40 = (p – 8) (p + 5)
2p3 – 24p2 + 64p = 2p (p2 – 12p + 32)
= 2p (p – 8) (p – 4)
`("p"^2 - 3"p" - 40)/(2"p"^3 - 24"p"^2 + 64"p") = (("p" - 8)("p" + 5))/(2"p"("p" - 8)("p" - 4))`
= `("p" + 5)/(2"p"("p" - 4))`
APPEARS IN
संबंधित प्रश्न
Reduce the following rational expression to its lowest form
`(x^2 - 11x + 18)/(x^2 - 4x + 4)`
Simplify `(x + 4)/(3x + 4y) xx (9x^2 - 16y^2)/(2x^2 + 3x - 20)`
Simplify `(x^3 - y^3)/(3x^2 + 9xy + 6y^2) xx (x^2 + 2xy + y^2)/(x^2 - y^2)`
Simplify `(x + 2)/(4"y") ÷ (x^2 - x - 6)/(12y^2)`
If x = `("a"^2 + 3"a" - 4)/(3"a"^2 - 3)` and y = `("a"^2 + 2"a" - 8)/(2"a"^2 - 2"a" - 4)` find the value of x2y–2
If a polynomial p(x) = x2 – 5x – 14 is divided by another polynomial q(x) we get `(x - 7)/(x + 2)`, find q(x)
Simplify `(4x)/(x^2 - 1) - (x + 1)/(x - 1)`
Pari needs 4 hours to complete the work. His friend Yuvan needs 6 hours to complete the same work. How long will it take to complete if they work together?
Reduce the given Rational expression to its lowest form
`(x^(3"a") - 8)/(x^(2"a") + 2x^"a" + 4)`
Simplify `(1/("p") + 1/("q" + "r"))/(1/"p" - 1/("q" + "r")) xx [1 + ("q"^2 + "r"^2 - "p"^2)/(2"qr")]`