Advertisements
Advertisements
प्रश्न
Reduce the following rational expression to its lowest form
`("p"^2 - 3"p" - 40)/(2"p"^3 - 24"p"^2 + 64"p")`
उत्तर
`("p"^2 - 3"p" - 40)/(2"p"^3 - 24"p"^2 + 64"p")`
p2 – 3p – 40 = (p – 8) (p + 5)
2p3 – 24p2 + 64p = 2p (p2 – 12p + 32)
= 2p (p – 8) (p – 4)
`("p"^2 - 3"p" - 40)/(2"p"^3 - 24"p"^2 + 64"p") = (("p" - 8)("p" + 5))/(2"p"("p" - 8)("p" - 4))`
= `("p" + 5)/(2"p"("p" - 4))`
APPEARS IN
संबंधित प्रश्न
Reduce the following rational expression to its lowest form
`(x^2 - 1)/(x^2 + x)`
Reduce the following rational expression to its lowest form
`(9x^2 + 81x)/(x^3 + 8x^2 - 9x)`
Find the excluded values, of the following expression
`"t"/("t"^2 - 5"t" + 6)`
Find the excluded values, of the following expression
`(x^2 + 6x + 8)/(x^2 + x - 2)`
Simplify `(4x^2y)/(2z^2) xx (6xz^3)/(20y^4)`
Simplify `("p"^2 - 10"p" + 21)/("p" - 7) xx ("p"^2 + "p" - 12)/("p" - 3)^2`
Identify rational expression should be subtracted from `(x^2 + 6x + 8)/(x^3 + 8)` to get `3/(x^2 - 2x + 4)`
If A = `x/(x + 1)` B = `1/(x + 1)` prove that `(("A" + "B")^2 + ("A" - "B")^2)/("A" + "B") = (2(x^2 + 1))/(x(x + 1)^2`
Reduce the given Rational expression to its lowest form
`(x^(3"a") - 8)/(x^(2"a") + 2x^"a" + 4)`
Two farmers Thilagan and Kausigan cultivates three varieties of grains namely rice, wheat and ragi. If the sale (in ₹) of three varieties of grains by both the farmers in the month of April is given by the matrix.
`{:("April sale in" ₹)/("rice" "wheat" "ragi"):}`
A = `[(500, 1000, 1500),(2500, 1500, 500)]"Thilagan"/"Kausigan"`
and the May month sale (in ₹) is exactly twice as that of the April month sale for each variety.
What is the average sales for the months of April and May