Advertisements
Advertisements
प्रश्न
Rohit borrowed ₹ 40,000 for 2 years at 10% per annum C.I. and Manish borrowed the same sum for the same time at 10.5% per annum simple interest. Which of these two gets less interest and by how much?
उत्तर
Sum borrowed (P) = ₹40000
Rate (R) = 10% p.a. compounded annually
Time (T) = 2 years
∴ Interest for the first year =`"PRT"/100`
`=₹(40000xx10xx1)/100`
= ₹4000
Amount after one year = ₹40000 + 4000
= ₹44000
Principal for the second year = ₹44000
∴ Interest for the second year
`=(44000xx10xx1)/100`
= ₹4400
∴ Compound Interest for 2 years = ₹4000 + 4400
= ₹8400
In the second case,
Principal (P) = ₹40000
Rate (R) = 10.5% p.a.
Time (T) = 2 years
∴ Simple Interest = `"PRT"/100=(40000xx10.5xx2)/100`
`=₹(40000xx105xx2)/(100xx10)`
= ₹8400
In both the cases, interest is same.
APPEARS IN
संबंधित प्रश्न
Calculate the amount and compound interest on Rs 62500 for `1 1/2` years at 8% per annum compounded half yearly.
Find the difference between the compound interest and simple interest. On a sum of Rs 50,000 at 10% per annum for 2 years.
Simple interest on a sum of money for 2 years at \[6\frac{1}{2} %\] per annum is Rs 5200. What will be the compound interest on the sum at the same rate for the same period?
The difference between the compound interest and simple interest on a certain sum for 2 years at 7.5% per annum is Rs 360. Find the sum.
Rekha borrowed Rs. 40,000 for 3 years at 10% per annum compound interest. Calculate the interest paid by her for the second year.
Calculate the difference between the compound interest and the simple interest on ₹ 8,000 in three years and at 10% per annum.
Find the amount and the compound interest payable annually on the following :
Rs.25000 for 1`(1)/(2)` years at 10% per annum.
The difference between simple interest and compound interest compounded annually on a certain sum is Rs.448 for 2 years at 8 percent per annum. Find the sum.
Find the compound interest on ₹ 3200 at 2.5% p.a for 2 years, compounded annually
The number of conversion periods in a year, if the interest on a principal is compounded every two months is ___________