Advertisements
Advertisements
प्रश्न
Show that:
\[\frac{\sqrt[3]{- 512}}{\sqrt[3]{343}} = \sqrt[3]{\frac{- 512}{343}}\]
उत्तर
LHS = \[\frac{\sqrt[3]{- 512}}{\sqrt[3]{343}} = \frac{- \sqrt[3]{512}}{\sqrt[3]{343}} = \frac{- \sqrt[3]{\left\{ 2 \times 2 \times 2 \right\} \times \left\{ 2 \times 2 \times 2 \right\} \times \left\{ 2 \times 2 \times 2 \right\}}}{\sqrt[3]{7 \times 7 \times 7}} = \frac{- \left( 2 \times 2 \times 2 \right)}{7} = \frac{- 8}{7}\]
RHS =
\[\sqrt[3]{\frac{- 512}{343}}\]
\[ = \sqrt[3]{\frac{\left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right)}{7 \times 7 \times 7}}\]
\[ = \sqrt[3]{\frac{\left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right)}{7} \times \frac{\left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right)}{7} \times \frac{\left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right)}{7}}\]
\[ = \sqrt[3]{\left( \frac{- 8}{7} \right)^3}\]
\[ = \frac{- 8}{7}\]
Because LHS is equal to RHS, the equation is true.
APPEARS IN
संबंधित प्रश्न
Find the smallest number by which the following number must be multiplied to obtain a perfect cube.
256
Find the cubes of the number 100 .
Write the cubes of 5 natural numbers which are multiples of 3 and verify the followings:
'The cube of a natural number which is a multiple of 3 is a multiple of 27'
Multiply 210125 by the smallest number so that the product is a perfect cube. Also, find out the cube root of the product.
Three numbers are in the ratio 1 : 2 : 3. The sum of their cubes is 98784. Find the numbers.
Find the cube root of the following integer −753571.
Making use of the cube root table, find the cube root 70 .
Find the cube-root of 1728.
Find the cube-root of -0.512
The cube root of a number x is denoted by ______.