Advertisements
Advertisements
Question
Show that:
\[\frac{\sqrt[3]{- 512}}{\sqrt[3]{343}} = \sqrt[3]{\frac{- 512}{343}}\]
Solution
LHS = \[\frac{\sqrt[3]{- 512}}{\sqrt[3]{343}} = \frac{- \sqrt[3]{512}}{\sqrt[3]{343}} = \frac{- \sqrt[3]{\left\{ 2 \times 2 \times 2 \right\} \times \left\{ 2 \times 2 \times 2 \right\} \times \left\{ 2 \times 2 \times 2 \right\}}}{\sqrt[3]{7 \times 7 \times 7}} = \frac{- \left( 2 \times 2 \times 2 \right)}{7} = \frac{- 8}{7}\]
RHS =
\[\sqrt[3]{\frac{- 512}{343}}\]
\[ = \sqrt[3]{\frac{\left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right)}{7 \times 7 \times 7}}\]
\[ = \sqrt[3]{\frac{\left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right)}{7} \times \frac{\left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right)}{7} \times \frac{\left( - 2 \right) \times \left( - 2 \right) \times \left( - 2 \right)}{7}}\]
\[ = \sqrt[3]{\left( \frac{- 8}{7} \right)^3}\]
\[ = \frac{- 8}{7}\]
Because LHS is equal to RHS, the equation is true.
APPEARS IN
RELATED QUESTIONS
Find the smallest number by which the following number must be multiplied to obtain a perfect cube.
243
Find the smallest number by which of the following number must be multiplied to obtain a perfect cube.
100
Find the cubes of the number 100 .
Write the cubes of 5 natural numbers which are of the form 3n + 1 (e.g. 4, 7, 10, ...) and verify the following:
'The cube of a natural number of the form 3n + 1 is a natural number of the same form i.e. when divided by 3 it leaves the remainder 1'.
What happens to the cube of a number if the number is multiplied by 4?
Write true (T) or false (F) for the following statement:
If a and b are integers such that a2 > b2, then a3 > b3.
Multiply 210125 by the smallest number so that the product is a perfect cube. Also, find out the cube root of the product.
Making use of the cube root table, find the cube root
1346.
Find the cube-root of 343
Show that 1944 is not a perfect cube