Advertisements
Advertisements
प्रश्न
Show that the roots of the equation `x^2+px-q^2=0` are real for all real values of p and q.
उत्तर
Given:
`x^2+px-q^2=0`
Here,
`a=1,b=p and c=-q^2`
Discriminant D is given by:
`D=(b^2-4ac) `
`=p^2-4xx1xx(-q^2)`
`=(p^2+4q^2)>0`
D > 0 for all real values of p and q.
Thus, the roots of the equation are real.
shaalaa.com
Relationship Between Discriminant and Nature of Roots
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Solve for x
`(x-1)/(x-2)+(x-3)/(x-4)=3 1/3`; x ≠ 2, 4
`4x^2+5x=0`
`2x^2-5sqrt2x+4=0`
`2x^2+x-4=0`
`sqrt2x^2+7+5sqrt2=0`
`3x^2-2x+2=0.b`
`x^2+6x-(a^2+2a-8)=0`
`4x^2-4bx-(a^2-b^2)=0`
Find the value of k for which the roots of `9x^2+8kx+16=0` are real and equal
Solve for x: \[\frac{1}{x - 3} - \frac{1}{x + 5} = \frac{1}{6}, x \neq 3, - 5\]