Advertisements
Advertisements
प्रश्न
Solve for x: \[\frac{1}{x - 3} - \frac{1}{x + 5} = \frac{1}{6}, x \neq 3, - 5\]
उत्तर
\[\frac{1}{x - 3} - \frac{1}{x + 5} = \frac{1}{6}\]
\[ \Rightarrow \frac{x + 5 - x + 3}{\left( x - 3 \right)\left( x + 5 \right)} = \frac{1}{6}\]
\[ \Rightarrow \frac{8}{\left( x - 3 \right)\left( x + 5 \right)} = \frac{1}{6}\]
\[\Rightarrow 48 = x^2 + 2x - 15\]
\[ \Rightarrow x^2 + 2x - 15 - 48 = 0\]
\[ \Rightarrow x^2 + 2x - 63 = 0\]
\[ \Rightarrow x^2 + 9x - 7x - 63 = 0\]
\[\Rightarrow x\left( x + 9 \right) - 7\left( x + 9 \right) = 0\]
\[ \Rightarrow \left( x - 7 \right)\left( x + 9 \right) = 0\]
\[ \Rightarrow x = 7, - 9\]
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
x2 - 2x + 1 = 0
Find the value of a and b for which `x=3/4`and `x =-2` are the roots of the equation `ax^2+bx-6=0`
` 2x^2-7x+6=0`
`sqrt3x^2+10x-8sqrt3=0`
`2sqrt3x^2-5x+sqrt3=0`
`x+1/x=3,x≠0`
`x^2-2ax-(4b^2-a^2)=0`
`x^2-(2b-1)x+(b^2-b-20)=0`
For what values of k are the roots of the quadratic equation `3x^2+2kx+27` real and equal ?
If the quadratic equation x2 + 4x + k = 0 has real and equal roots, then ______.