Advertisements
Advertisements
प्रश्न
`x^2-(2b-1)x+(b^2-b-20)=0`
उत्तर
The given equation is `x^2-(2b-1)x+(b^2-b-20)=0`
Comparing it with `Ax^2+Bx+C=0`
`A=1,B=-(2b-1) and C=b^2-b-20`
∴ Discriminant,
`D=B^2-4AC=[-(2b-1)]^2-4xx1xx(b^2-b-20)=4b^2-4b+1-4b^2+4b+80=81>0`
So, the given equation has real roots
Now, `sqrtD=sqrt18=9`
∴α=`(-B+sqrt(D))/(2A)=(-[-(2b-1)]+9)/(2xx1)=(2b+8)/2=b+4`
`β=(-B-sqrt(D))/(2A)=(-[-(2b-1)]-9)/(2xx1)=(2b-10)/2=b-5`
Hence, (b+4) and (b-5) are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`2x^2-2sqrt6x+3=0`
`2x^2+x-6=0`
`sqrt3x^2+2sqrt2x-2sqrt3=0`
`25x^2+30x+7=0`
`2x^2+5sqrt3x+6=0`
`36x^2-12ax+(a^2-b^2)=0`
Show that the roots of the equation `x^2+px-q^2=0` are real for all real values of p and q.
For what values of p are the roots of the equation `4x^2+px+3=0` real and equal?
Find the nonzero value of k for which the roots of the quadratic equation `9x^2-3kx+k=0` are real and equal.
Solve for x: \[\frac{16}{x} - 1 = \frac{15}{x + 1}, x \neq 0, - 1\]