Advertisements
Advertisements
प्रश्न
`36x^2-12ax+(a^2-b^2)=0`
उत्तर
The given equation is `36x^2-12ax(a^2-b^2)=0`
Comparing it with `Ax^2+Bx+C=0`
`A=36,B=-12a and C=a^2-b^2`
∴ Discriminant,
`D=B^2-4AC=(-12a)^2-4xx36xx(a^2-b^2)=144a^2-144a^2+144b^2=144b^2>0`
So, the given equation has real roots
Now, `sqrtD=sqrt144b^2=12b`
∴ `α =(-B+sqrtD)/(2A)=(-(-12a)+12b)/(2xx36)=(12(a+b))/72=(a+b)/0`
β=`(-B-sqrtD)/(2A)=(-(-12a)-12b)/(2xx36)=(12(a-b))/72=(a-b)/0`
Hence, `(a+b)/6` and `(a-b)/6` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
`sqrt3x^2+2sqrt2x-2sqrt3=0`
Solve for x
`(x-1)/(x-2)+(x-3)/(x-4)=3 1/3`; x ≠ 2, 4
Which of the following are the roots of` 3x^2+2x-1=0?`
-1
`4x^2+5x=0`
`x^2-6x+4=0`
`2x^2+x-4=0`
`2sqrt3x^2-5x+sqrt3=0`
`3a^2x^2+8abx+4b^2=0`
`5x^2-4x+1=0`
Find the discriminant of the quadratic equation 4x2 – 5 = 0 and hence comment on the nature of roots of the equation.