Advertisements
Advertisements
प्रश्न
`3/n x^2 n/m=1-2x`
उत्तर
The given equation is
`3/n x^2 n/m=1-2x`
⇒`( 3^2x^2+n^2)/(mn)=1-2x`
⇒`m^2x^2+n^2=mn-2mnx`
⇒`m^2x^2+2mnx+n^2-nm=0`
This equation is of the form `ax^2+bx+c=0` where `a=m^2,b=2mn` and `c=n^2-mn`
∴ Discriminant,
`D=b^2-4ac=(2mn)^2-4xxm^2xx(n^2-mn)=4m^2n^2-4m^3n^2=4m^3n>`
So, the given equation has real roots.
Now, `sqrtD=sqrt4m^3n=2msqrtmn`
∴` α=(-b+sqrt(D))/(2a)=(-2mn+2msqrtmn)/(2xxm^2)=(2mn(-n+sqrtmn))/(2m^2)=(-n+sqrtmn)/m`
β=` α=(-b-sqrt(D))/(2a)=(-2mn-2msqrtmn)/(2xxm^2)=(2mn(-n-sqrtmn))/(2m^2)=(-n-sqrtmn)/m`
Hence, `(-n+sqrtmn)/m` and `(-n-sqrtmn)/m`are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
`sqrt3x^2+2sqrt2x-2sqrt3=0`
Write the discriminant of the following quadratic equations:
3x2 + 2x + k = 0
`11-x=2x^2`
`2x^2+5sqrt3x+6=0`
`x^2+5x-(a^+a-6)=0`
`4x^2-4bx-(a^2-b^2)=0`
`x^2-(2b-1)x+(b^2-b-20)=0`
`12abx^2-(9a^2-8b^2)x-6ab=0,` `Where a≠0 and b≠0`
Find the nature of roots of the following quadratic equations:
`x^2-x+2=0`
Find the values of k for which the given quadratic equation has real and distinct roots:
`x^2-kx+9=0`