हिंदी

`3/N X^2 N/M=1-2x` - Mathematics

Advertisements
Advertisements

प्रश्न

`3/n x^2 n/m=1-2x` 

 

उत्तर

The given equation is 

`3/n x^2 n/m=1-2x` 

⇒`( 3^2x^2+n^2)/(mn)=1-2x` 

⇒`m^2x^2+n^2=mn-2mnx` 

⇒`m^2x^2+2mnx+n^2-nm=0` 

This equation is of the form `ax^2+bx+c=0` where `a=m^2,b=2mn`  and `c=n^2-mn`

∴  Discriminant, 

`D=b^2-4ac=(2mn)^2-4xxm^2xx(n^2-mn)=4m^2n^2-4m^3n^2=4m^3n>` 

So, the given equation has real roots.
Now, `sqrtD=sqrt4m^3n=2msqrtmn`  

∴` α=(-b+sqrt(D))/(2a)=(-2mn+2msqrtmn)/(2xxm^2)=(2mn(-n+sqrtmn))/(2m^2)=(-n+sqrtmn)/m`  

β=` α=(-b-sqrt(D))/(2a)=(-2mn-2msqrtmn)/(2xxm^2)=(2mn(-n-sqrtmn))/(2m^2)=(-n-sqrtmn)/m`  

Hence, `(-n+sqrtmn)/m` and `(-n-sqrtmn)/m`are the roots of the given equation. 

 

 

shaalaa.com
Relationship Between Discriminant and Nature of Roots
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Quadratic Equations - Exercises 3

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 10 Quadratic Equations
Exercises 3 | Q 24
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×