Advertisements
Advertisements
प्रश्न
`3/n x^2 n/m=1-2x`
उत्तर
The given equation is
`3/n x^2 n/m=1-2x`
⇒`( 3^2x^2+n^2)/(mn)=1-2x`
⇒`m^2x^2+n^2=mn-2mnx`
⇒`m^2x^2+2mnx+n^2-nm=0`
This equation is of the form `ax^2+bx+c=0` where `a=m^2,b=2mn` and `c=n^2-mn`
∴ Discriminant,
`D=b^2-4ac=(2mn)^2-4xxm^2xx(n^2-mn)=4m^2n^2-4m^3n^2=4m^3n>`
So, the given equation has real roots.
Now, `sqrtD=sqrt4m^3n=2msqrtmn`
∴` α=(-b+sqrt(D))/(2a)=(-2mn+2msqrtmn)/(2xxm^2)=(2mn(-n+sqrtmn))/(2m^2)=(-n+sqrtmn)/m`
β=` α=(-b-sqrt(D))/(2a)=(-2mn-2msqrtmn)/(2xxm^2)=(2mn(-n-sqrtmn))/(2m^2)=(-n-sqrtmn)/m`
Hence, `(-n+sqrtmn)/m` and `(-n-sqrtmn)/m`are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
2x2 - 5x + 3 = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`sqrt2x^2+7x+5sqrt2=0`
`3x^2-2x+8=0`
`2sqrt3x^2-5x+sqrt3=0`
`x+1/x=3,x≠0`
`x-1/x=3,x≠0`
`36x^2-12ax+(a^2-b^2)=0`
If a and b are distinct real numbers, show that the quadratic equations
`2(a^2+b^2)x^2+2(a+b)x+1=0` has no real roots.
For what value of k are the roots of the quadratic equation `kx(x-2sqrt5)+10=0`real and equal.
Find the value of p for which the quadratic equation `2x^2+px+8=0` has real roots.