Advertisements
Advertisements
प्रश्न
`x-1/x=3,x≠0`
उत्तर
The given equation is
`x-1/x=3,x≠0`
⇒`(x^2-1)/x=3`
⇒`x^2-1=3x`
⇒`x^2-3x-1=0`
This equation is of the form `ax^2+bx+c=0` where` a=1,b=-3 and c=-1`
∴ Discriminant, `D=b^2-4ac=(-3)^2-4xx1xx(-1)=9+4=13>0`
So, the given equation has real roots.
Now, `sqrtD=sqrt13`
∴ `α=(-b+sqrt(D))/(2a)=(-(-3)+sqrt(13))/(2xx1)=(3+sqrt(13))/2`
β=`(-b+sqrt(D))/(2a)=(-(-3)+sqrt(13))/(2xx1)=(3+sqrt(13))/2=(3-sqrt(13))/2`
Hence, `(3+sqrt(13))/3` and `(3-sqrt(13))/3`are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`sqrt3x^2+10x-8sqrt3=0`
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3x2 - 2x + 2 = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`3x^2+2sqrt5x-5=0`
`15x^2-28=x`
`x^2+x+2=0`
`1/x-1/(x-2)=3,x≠0,2`
`12abx^2-(9a^2-8b^2)x-6ab=0,` `Where a≠0 and b≠0`
For what values of p are the roots of the equation `4x^2+px+3=0` real and equal?
Find the values of k for which the quadratic equation `(3k+1)x^2+2(k+1)x+1=0` has real and equal roots.
If 3 is a root of the quadratic equation` x^2-x+k=0` find the value of p so that the roots of the equation `x^2+2kx+(k^2+2k+p)=0` are equal.