Advertisements
Advertisements
प्रश्न
`1/x-1/(x-2)=3,x≠0,2`
उत्तर
The given equation is
`1/x-1/x-2=3,x≠0,2`
⇒ `(x-2-x)/(x(x-2))=3`
⇒`-2/(x^2-2x)=3`
⇒`-2=3x^2-6x`
⇒`3x^2-6x+2=0`
This equation is of the form `ax^2+bx+c=0` Where `a=3``, b=-6` and `c=2`
∴Discriminant, `D=b^2-4ac=(-6)^2-4xx3xx2=36-24=12>0`
So, the given equation has real roots.
Now, `sqrtD=sqrt12=2sqrt3`
∴ `α=(-b+sqrt(D))/(2a)=(-(-6)+2sqrt(3))/(2xx3)=(6+2sqrt(3))/6=(3+sqrt(3))/3`
`β= (-b-sqrt(D))/(2a)=(-(-6)-2sqrt(3))/(2xx3)=(6-2sqrt(3))/6=(3-sqrt(3))/3`
Hence, `(3+sqrt3)/3` and`(3-sqrt3)/3` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Find the value of k for which x = 1is a root of the equation `x^2+kx+3=0`
`3x^2-243=0`
`11-x=2x^2`
`16x^2+2ax+1`
`x^2+5x-(a^+a-6)=0`
`x^2-(2b-1)x+(b^2-b-20)=0`
If -4 is a root of the equation `x^2+2x+4p=0` find the value of k for the which the quadratic equation ` x^2+px(1+3k)+7(3+2k)=0` has equal roots.
A two-digit number is 4 times the sum of its digits and twice the product of digits. Find the number.
For what value of k, are the roots of the quadratic equation kx (x − 2) + 6 = 0 equal ?
Solve for x: \[\frac{16}{x} - 1 = \frac{15}{x + 1}, x \neq 0, - 1\]