Advertisements
Advertisements
प्रश्न
`x^2-(2b-1)x+(b^2-b-20)=0`
उत्तर
The given equation is `x^2-(2b-1)x+(b^2-b-20)=0`
Comparing it with `Ax^2+Bx+C=0`
`A=1,B=-(2b-1) and C=b^2-b-20`
∴ Discriminant,
`D=B^2-4AC=[-(2b-1)]^2-4xx1xx(b^2-b-20)=4b^2-4b+1-4b^2+4b+80=81>0`
So, the given equation has real roots
Now, `sqrtD=sqrt18=9`
∴α=`(-B+sqrt(D))/(2A)=(-[-(2b-1)]+9)/(2xx1)=(2b+8)/2=b+4`
`β=(-B-sqrt(D))/(2A)=(-[-(2b-1)]-9)/(2xx1)=(2b-10)/2=b-5`
Hence, (b+4) and (b-5) are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
4x2 - 3kx + 1 = 0
Which of the following are the roots of `3x^2+2x-1=0?`
`1/3`
Find the value of k for which x = 1is a root of the equation `x^2+kx+3=0`
`(x-1)(2x-1)=0`
`25x^2+30x+7=0`
`4sqrt3x^2+5x-2sqrt3=0`
`x^2+x+2=0`
`x-1/x=3,x≠0`
`3a^2x^2+8abx+4b^2=0`
A two-digit number is 4 times the sum of its digits and twice the product of digits. Find the number.