Advertisements
Advertisements
प्रश्न
`3a^2x^2+8abx+4b^2=0`
उत्तर
Given:
`3a^2x^2+8abx+4b^2=0`
On comparing it with` Ax^2+Bx+C=0` we get:
`Aa=3a^2, B=8ab and C=4b^2`
Discriminant D is given by:
`D=(B^2-4AC) `
=`(8ab)^2-4xx3a^2xx4b^2`
=` 16a^2b^2>0`
Hence, the roots of the equation are real.
Roots α and β are given by:
`α =(-b+sqrt(D))/(2a)=(-8ab+sqrt16a^2b^2)/(2xx3a^2)=(-8ab+4ab)/(6a^2)=(-4ab)/(6a^2)=(-2b)/(3a) `
`β=(-b-sqrt(D))/(2a)=(-8ab- sqrt16a^2b^2)/(2xx3a^2)=(-8ab-4ab)/(6a^2)=(-12ab)/(6a^2)=(-2b)/(a)`
Thus, the roots of the equation are `(-2b)/(3a) and (-2b)/a`
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`sqrt3x^2+10x-8sqrt3=0`
`2x^2+x-6=0`
`3x^2-2x+8=0`
`(x-1)(2x-1)=0`
`2x^2+x-4=0`
`x+1/x=3,x≠0`
`4x^2-4a^2x+(a^4-b^4)=0`
Find the nature of roots of the following quadratic equations:
`12x^2-4sqrt15x+5=0`
For what value of k are the roots of the quadratic equation `kx(x-2sqrt5)+10=0`real and equal.
If the quadratic equation x2 + 4x + k = 0 has real and equal roots, then ______.