Advertisements
Advertisements
प्रश्न
`2x^2+x-4=0`
उत्तर
The given equation is `2x^2+x-4=0`
Comparing it with `ax^2+bx+c=0` we get
`a = 2,b =1and c = -4 `
∴Discriminant, `D=b^2-4ac=(1)^2-4xx2xx(-4)=1+32=33>0`
So, the given equation has real roots.
Now, `sqrtD=sqrt33`
∴ α=`(-b+sqrt(D))/(2a)=(-1+sqrt(33))/(2xx2)=(-1+sqrt(33))/4`
∴ β=`(-b-sqrt(D))/(2a)=(-1-sqrt(33))/(2xx2)=(-1-sqrt(33))/4`
Hence, `(-1+sqrt(33))/4` and `(-1-sqrt(33)/4)` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3x2 - 2x + 2 = 0
Which of the following are the roots of `3x^2+2x-1=0`
`-1/2`
` 2x^2-7x+6=0`
`sqrt2x^2+7+5sqrt2=0`
`3x^2-2sqrt6x+2=0`
`x^2+6x-(a^2+2a-8)=0`
`x^2-(2b-1)x+(b^2-b-20)=0`
`a^2b^2x^2-(4b^4-3a^4)x-12a^2b^2=0,a≠0 and b≠ 0`
If -5 is a root of the quadratic equation `2x^2+px-15=0` and the quadratic equation `p(x^2+x)+k=0` 0has equal roots, find the value of k.
Find the value of p for which the quadratic equation `2x^2+px+8=0` has real roots.