Advertisements
Advertisements
प्रश्न
`x^2+6x-(a^2+2a-8)=0`
उत्तर
The given equation is `x^2+6x-(a^2+2a-8)=0`
Comparing it with `Ax^2+Bx+C=0`
`A=1,B=6 and C=-(a^2+2a-8)`
∴ Discriminant, D=
`B^2-4AC=6^2-4xx1xx[-(a^2+2a-8)]=36+4a^2+8a-32=4a^2+8a-32=4a^2+8a+4`
`=4(a^2+2a+1)=4(a+1)^2>0`
So, the given equation has real roots
Now, `sqrtD=sqrt(4(a+1)^2)=2(a+1)`
∴`α=(-B+sqrt(D))/(2A)=(-6+2(a+1))/(2xx1)=(2a-4)/2=a-2`
`β=(-B-sqrt(D))/(2A)=(-6-2(a+1))/(2xx1)=(2a-8)/2=a-4=-(a+4)`
Hence, (a-2) and -(a+4) are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`3x^2+2sqrt5x-5=0`
Solve for x
`x+1/x=3`, x ≠ 0
`(x-1)(2x-1)=0`
`x^2-6x+4=0`
`x+1/x=3,x≠0`
`x^2-2ax+(a^2-b^2)=0`
`4x^2-4bx-(a^2-b^2)=0`
Find the nature of roots of the following quadratic equations:
`12x^2-4sqrt15x+5=0`
Show that the roots of the equation `x^2+px-q^2=0` are real for all real values of p and q.
Find the values of k for which the given quadratic equation has real and distinct roots:
`x^2-kx+9=0`