Advertisements
Advertisements
प्रश्न
`x^2-2ax-(4b^2-a^2)=0`
उत्तर
The given equation is `x^2-2ax-(4b^2-a^2)=0`
Comparing it with `Ax^2+Bx+C=0` we get
`A=1,B=-2a and C=-(4b^2-a^2)`
∴ Discriminant,
`B^2-4AC=(-2a)^2-4xx1xx[-(4b^2-a^2)]=4a^2+16b^2-4a^2=16b^2>0`
So, the given equation has real roots
Now, `sqrtD=sqrt16b^2=4b`
∴ `α=(-B+sqrt(D))/(2A)=(-(-2a)+4b)/(2xx1)=(2(a+2b))/2=a+2b`
`β=(-B-sqrt(D))/(2A)=(-(-2a)-4b)/(2xx1)=2(a-2b)/2=a-2b`
Hence, `a+2b and a-2b` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
4x2 - 3kx + 1 = 0
`3x^2-243=0`
`25x^2+30x+7=0`
`x+1/x=3,x≠0`
`3/n x^2 n/m=1-2x`
`a^2b^2x^2-(4b^4-3a^4)x-12a^2b^2=0,a≠0 and b≠ 0`
Find the nature of roots of the following quadratic equations:
`5x^2-4x+1=0`
`5x^2-4x+1=0`
The denominator of a fraction is 3 more than its numerator. The sum of the fraction and its reciprocal is `2 9/10` Find the fraction.
Solve for x: \[\frac{1}{x - 3} - \frac{1}{x + 5} = \frac{1}{6}, x \neq 3, - 5\]