Advertisements
Advertisements
प्रश्न
Solve for x: \[\frac{1}{x - 3} - \frac{1}{x + 5} = \frac{1}{6}, x \neq 3, - 5\]
उत्तर
\[\frac{1}{x - 3} - \frac{1}{x + 5} = \frac{1}{6}\]
\[ \Rightarrow \frac{x + 5 - x + 3}{\left( x - 3 \right)\left( x + 5 \right)} = \frac{1}{6}\]
\[ \Rightarrow \frac{8}{\left( x - 3 \right)\left( x + 5 \right)} = \frac{1}{6}\]
\[\Rightarrow 48 = x^2 + 2x - 15\]
\[ \Rightarrow x^2 + 2x - 15 - 48 = 0\]
\[ \Rightarrow x^2 + 2x - 63 = 0\]
\[ \Rightarrow x^2 + 9x - 7x - 63 = 0\]
\[\Rightarrow x\left( x + 9 \right) - 7\left( x + 9 \right) = 0\]
\[ \Rightarrow \left( x - 7 \right)\left( x + 9 \right) = 0\]
\[ \Rightarrow x = 7, - 9\]
APPEARS IN
संबंधित प्रश्न
Find the value of k for which x = 1is a root of the equation `x^2+kx+3=0`
Find the roots of the each of the following equations, if they exist, by applying the quadratic formula:
`x^2-4x-1=0`
`16x^2+2ax+1`
`x-1/x=3,x≠0`
`3/n x^2 n/m=1-2x`
`a^2b^2x^2-(4b^4-3a^4)x-12a^2b^2=0,a≠0 and b≠ 0`
If the quadratic equation `(1+m^2)x^2+2mcx+(c^2-a^2)=0` has equal roots, prove that `c^2=a^2(1+m^2)`
Find the value of p for which the quadratic equation `2x^2+px+8=0` has real roots.
Find the value of k for which the roots of `9x^2+8kx+16=0` are real and equal
A two-digit number is 4 times the sum of its digits and twice the product of digits. Find the number.