Advertisements
Advertisements
प्रश्न
If the quadratic equation `(1+m^2)x^2+2mcx+(c^2-a^2)=0` has equal roots, prove that `c^2=a^2(1+m^2)`
उत्तर
Given:
`(1+m^2)x^2+2mcx+(c^2-a^2)=0`
Here,
`a=(1+m^2), b=2mc and c=(c^2-a^2)`
It is given that the roots of the equation are equal; therefore, we have:
`D=0`
⇒` (b^2-4ac)=0`
⇒ `(2m)^2-4xx(1+m^2)xx(c^2-a^2)=0`
⇒`4m^2c^2-4(c^2-a^2+m^2c^2-m^2a^2)=0`
⇒` 4m^2c^2-4c^2+4a^2-4m^2c^2+4m^2a^2=0`
⇒`-4c^2+4a+4m^2a^2=0`
⇒`a^2+m^2a^2=c^2`
⇒`a^2(1+m^2)=c^2`
⇒`c^2=a^2(1+m^2)`
Hence proved
APPEARS IN
संबंधित प्रश्न
Which of the following are the roots of `3x^2+2x-1=0?`
`1/3`
`4x^2+5x=0`
` 2x^2-7x+6=0`
`sqrt3x^2-2sqrt2x-2sqrt3=0`
`2x^2+6sqrt3x-60=0`
`2x^2+5sqrt3x+6=0`
If a and b are distinct real numbers, show that the quadratic equations
`2(a^2+b^2)x^2+2(a+b)x+1=0` has no real roots.
If -5 is a root of the quadratic equation `2x^2+px-15=0` and the quadratic equation `p(x^2+x)+k=0` 0has equal roots, find the value of k.
Find the values of k for which the given quadratic equation has real and distinct root:
`5x^2-kx+1=0`
If the quadratic equation x2 + 4x + k = 0 has real and equal roots, then ______.