Advertisements
Advertisements
प्रश्न
`sqrt3x^2-2sqrt2x-2sqrt3=0`
उत्तर
The given equation is `sqrt3x^2-2sqrt2x-2sqrt3=0`
Comparing it with `ax^2+bx+c=0`
`a=sqrt3,b=-2sqrt2 and c=-2sqrt3`
∴ Discriminant,` D=b^2-4ac=(-2sqrt2)^2-4xxsqrt3xx(-2sqrt3)=8+24=32>0`
So, the given equation has real roots.
Now, `sqrtD=sqrt32=4sqrt2`
∴ α =`(-b+sqrt(D))/(2a)=(-(-2sqrt2)+4sqrt(2))/(2xxsqrt(3))=(6sqrt2)/(2sqrt3)=sqrt6`
β =`(-b+sqrt(D))/(2a)=(-(-2sqrt2)+4sqrt(2))/(2xxsqrt(3))=(-2sqrt(2))/(2sqrt(3))=-sqrt6/3`
Hence, `sqrt6` and `-sqrt(6)/3` are the root of the given equation.
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3x2 - 2x + 2 = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`sqrt2x^2+7x+5sqrt2=0`
`11-x=2x^2`
`25x^2+30x+7=0`
`2x^2+ax-a^2=0`
Find the nature of roots of the following quadratic equations:
` 3x^2-2sqrt6x+2=0`
Find the values of p for which the quadratic equation `(p+1)x^2-6(p+1)x+3(p+9)=0` `p≠-11`has equal roots. Hence find the roots of the equation.
If the quadratic equation `(1+m^2)x^2+2mcx+(c^2-a^2)=0` has equal roots, prove that `c^2=a^2(1+m^2)`
Find the values of k for which the given quadratic equation has real and distinct root:
`5x^2-kx+1=0`
If a and b are real and a ≠ b then show that the roots of the equation
`(a-b)x^2+5(a+b)x-2(a-b)=0`are equal and unequal.