Advertisements
Advertisements
Question
`sqrt3x^2-2sqrt2x-2sqrt3=0`
Solution
The given equation is `sqrt3x^2-2sqrt2x-2sqrt3=0`
Comparing it with `ax^2+bx+c=0`
`a=sqrt3,b=-2sqrt2 and c=-2sqrt3`
∴ Discriminant,` D=b^2-4ac=(-2sqrt2)^2-4xxsqrt3xx(-2sqrt3)=8+24=32>0`
So, the given equation has real roots.
Now, `sqrtD=sqrt32=4sqrt2`
∴ α =`(-b+sqrt(D))/(2a)=(-(-2sqrt2)+4sqrt(2))/(2xxsqrt(3))=(6sqrt2)/(2sqrt3)=sqrt6`
β =`(-b+sqrt(D))/(2a)=(-(-2sqrt2)+4sqrt(2))/(2xxsqrt(3))=(-2sqrt(2))/(2sqrt(3))=-sqrt6/3`
Hence, `sqrt6` and `-sqrt(6)/3` are the root of the given equation.
APPEARS IN
RELATED QUESTIONS
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3a2x2 + 8abx + 4b2 = 0, a ≠ 0
`2x^2+5sqrt3x+6=0`
`3/n x^2 n/m=1-2x`
`36x^2-12ax+(a^2-b^2)=0`
`x^2+6x-(a^2+2a-8)=0`
`x^2-4ax-b^2+4a^2=0`
`4x^2-4a^2x+(a^4-b^4)=0`
`5x^2-4x+1=0`
Solve for x: \[\frac{1}{x - 3} - \frac{1}{x + 5} = \frac{1}{6}, x \neq 3, - 5\]
Find the discriminant of the quadratic equation 4x2 – 5 = 0 and hence comment on the nature of roots of the equation.