Advertisements
Advertisements
प्रश्न
Find the values of k for which the given quadratic equation has real and distinct root:
`5x^2-kx+1=0`
उत्तर
The given equation is` 5x^2-kx+1=0`
∴` D=(-k)^2-4xx5xx1=k^2-20`
The given equation has real and distinct roots if `D >0`
∴` k^2-20>0`
⇒ `k^2-(2sqrt5)^2>0`
⇒ `(k-2sqrt5) (k+2sqrt5)>0`
⇒`k<-2sqrt5 or k>2sqrt5`
APPEARS IN
संबंधित प्रश्न
`(2x-3) (3x+1)=0`
`3x^2-243=0`
`sqrt3x^2-2sqrt2x-2sqrt3=0`
`4sqrt3x^2+5x-2sqrt3=0`
`2x^2+5sqrt3x+6=0`
`36x^2-12ax+(a^2-b^2)=0`
`x^2-2ax+(a^2-b^2)=0`
Find the value of p for which the quadratic equation `2x^2+px+8=0` has real roots.
Find the values of k for which the given quadratic equation has real and distinct roots:
`kx^2+6x+1=0`
If the roots of the equations `ax^2+2bx+c=0` and `bx^2-2sqrtacx+b=0`are simultaneously real then prove that `b^2=ac`