Advertisements
Advertisements
प्रश्न
If the roots of the quadratic equation `(c^2-ab)x^2-2(a^2-bc)x+(b^2-ac)=0` are real and equal, show that either a=0 or `(a^3+b^3+c^3=3abc)`
उत्तर
Given:
`(c^2-ab)x^2-2(a^2-bc)x+(b^2-ac)=0`
Here,
`a=(c^2-ab), b==-2(a^2-bc),c=(b^2-ac)=0`
`D=0`
⇒ `(b^2-4ac)=0`
⇒` {-2(a^2-bc)}^2-4xx(c^2-ab)xx(b^2-ac)=0`
⇒`4(a^4-2a^2bc+b^2c^2) -4(b^2c^2-ac^3-ab^3+a^2bc)=0`
⇒` a^4-2a^2bc+b^2c^2-b^2c^2+ac^3+ab^3-a^2bc=0`
⇒`a^4-3a^2bc+ac^3+ab^3=0`
⇒`a(a^3-3abc+c^3+b^3)=0`
Now,
`a= a^3-3abc+c^3+b^3=0`
`a=0 or a^3+b^3+c^3abc`
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`2x^2-2sqrt6x+3=0`
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`2x^2+5sqrt3x+6=0`
Solve for x
`(x-1)/(x-2)+(x-3)/(x-4)=3 1/3`; x ≠ 2, 4
` 2x^2-7x+6=0`
`25x^2+30x+7=0`
`x^2-2ax-(4b^2-a^2)=0`
`4x^2-4a^2x+(a^4-b^4)=0`
Find the values of p for which the quadratic equation `(p+1)x^2-6(p+1)x+3(p+9)=0` `p≠-11`has equal roots. Hence find the roots of the equation.
If -5 is a root of the quadratic equation `2x^2+px-15=0` and the quadratic equation `p(x^2+x)+k=0` 0has equal roots, find the value of k.
If the quadratic equation x2 + 4x + k = 0 has real and equal roots, then ______.