Advertisements
Advertisements
Question
If the roots of the quadratic equation `(c^2-ab)x^2-2(a^2-bc)x+(b^2-ac)=0` are real and equal, show that either a=0 or `(a^3+b^3+c^3=3abc)`
Solution
Given:
`(c^2-ab)x^2-2(a^2-bc)x+(b^2-ac)=0`
Here,
`a=(c^2-ab), b==-2(a^2-bc),c=(b^2-ac)=0`
`D=0`
⇒ `(b^2-4ac)=0`
⇒` {-2(a^2-bc)}^2-4xx(c^2-ab)xx(b^2-ac)=0`
⇒`4(a^4-2a^2bc+b^2c^2) -4(b^2c^2-ac^3-ab^3+a^2bc)=0`
⇒` a^4-2a^2bc+b^2c^2-b^2c^2+ac^3+ab^3-a^2bc=0`
⇒`a^4-3a^2bc+ac^3+ab^3=0`
⇒`a(a^3-3abc+c^3+b^3)=0`
Now,
`a= a^3-3abc+c^3+b^3=0`
`a=0 or a^3+b^3+c^3abc`
APPEARS IN
RELATED QUESTIONS
Write the discriminant of the following quadratic equations:
3x2 + 2x + k = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
x2 + x + 2 = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`3x^2+2sqrt5x-5=0`
`4x^2+5x=0`
`sqrt3x^2-2sqrt2x-2sqrt3=0`
`2x^2+5sqrt3x+6=0`
`3x^2-2x+2=0.b`
`a^2b^2x^2-(4b^4-3a^4)x-12a^2b^2=0,a≠0 and b≠ 0`
Find the nature of roots of the following quadratic equations:
`2x^2-8x+5=0`
Find the values of p for which the quadratic equation `(p+1)x^2-6(p+1)x+3(p+9)=0` `p≠-11`has equal roots. Hence find the roots of the equation.