English

If the Roots of the Quadratic Equation `(C^2-ab)X^2-2(A^2-bc)X+(B^2-ac)=0` Are Real And Equal, Show that Either A=0 Or `(A^3+B^3+C^3=3abc)` - Mathematics

Advertisements
Advertisements

Question

If the roots of the quadratic equation `(c^2-ab)x^2-2(a^2-bc)x+(b^2-ac)=0` are real and equal, show that either  a=0  or  `(a^3+b^3+c^3=3abc)` 

 

Solution

Given: 

`(c^2-ab)x^2-2(a^2-bc)x+(b^2-ac)=0` 

Here, 

`a=(c^2-ab), b==-2(a^2-bc),c=(b^2-ac)=0` 

`D=0` 

⇒ `(b^2-4ac)=0` 

⇒` {-2(a^2-bc)}^2-4xx(c^2-ab)xx(b^2-ac)=0` 

⇒`4(a^4-2a^2bc+b^2c^2) -4(b^2c^2-ac^3-ab^3+a^2bc)=0` 

⇒` a^4-2a^2bc+b^2c^2-b^2c^2+ac^3+ab^3-a^2bc=0` 

⇒`a^4-3a^2bc+ac^3+ab^3=0` 

⇒`a(a^3-3abc+c^3+b^3)=0`  

Now, 

`a= a^3-3abc+c^3+b^3=0`  

`a=0 or  a^3+b^3+c^3abc` 

 

 

shaalaa.com
Relationship Between Discriminant and Nature of Roots
  Is there an error in this question or solution?
Chapter 10: Quadratic Equations - Exercises 4

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 10 Quadratic Equations
Exercises 4 | Q 15
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×