Advertisements
Advertisements
प्रश्न
`4x^2-4a^2x+(a^4-b^4)=0`
उत्तर
The given equation is `4x^2-4a^2x+(a^4-b^4)=0`
Comparing it with `Ax^2+Bx+C=0`
`A=4,B=-4a^2 and C=a^4-b^4`
∴ Discriminant,` B^2-4AC=(-4a^2)^2-4xx4xx(a^2-b^4)=16a^4-16a^4=16b^4=16b^4>0`
So, the given equation has real roots
Now, `sqrtD=sqrt16b^4=4b^2`
∴`α = (-B+sqrt(D))/(2A)=(-(-4a^2)+4b^2)/(2xx4)=(4(a^2+b^2))/8=(a^2+b^2)/2`
`β= (-B-sqrt(D))/(2A)=(-(-4a^2)-4b^2)/(2xx4)=(4(a^2-b^2))/8=(a^2-b^2)/2`
Hence, `1/2(a^2+b^2)` and `1/2(a^2-b^2)` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
x2 + 2x + 4 = 0
Which of the following are the roots of` 3x^2+2x-1=0?`
-1
`11-x=2x^2`
`25x^2+30x+7=0`
`16x^2+2ax+1`
`x^2+x+2=0`
`x^2-2ax+(a^2-b^2)=0`
`4x^2-4bx-(a^2-b^2)=0`
Show that the roots of the equation `x^2+px-q^2=0` are real for all real values of p and q.
If -5 is a root of the quadratic equation `2x^2+px-15=0` and the quadratic equation `p(x^2+x)+k=0` 0has equal roots, find the value of k.