Advertisements
Advertisements
प्रश्न
`4x^2-4a^2x+(a^4-b^4)=0`
उत्तर
The given equation is `4x^2-4a^2x+(a^4-b^4)=0`
Comparing it with `Ax^2+Bx+C=0`
`A=4,B=-4a^2 and C=a^4-b^4`
∴ Discriminant,` B^2-4AC=(-4a^2)^2-4xx4xx(a^2-b^4)=16a^4-16a^4=16b^4=16b^4>0`
So, the given equation has real roots
Now, `sqrtD=sqrt16b^4=4b^2`
∴`α = (-B+sqrt(D))/(2A)=(-(-4a^2)+4b^2)/(2xx4)=(4(a^2+b^2))/8=(a^2+b^2)/2`
`β= (-B-sqrt(D))/(2A)=(-(-4a^2)-4b^2)/(2xx4)=(4(a^2-b^2))/8=(a^2-b^2)/2`
Hence, `1/2(a^2+b^2)` and `1/2(a^2-b^2)` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Solve for x
`(x-1)/(x-2)+(x-3)/(x-4)=3 1/3`; x ≠ 2, 4
`2x^2-5sqrt2x+4=0`
`3x^2-2x+2=0.b`
`36x^2-12ax+(a^2-b^2)=0`
`x^2-2ax-(4b^2-a^2)=0`
Find the nature of roots of the following quadratic equations:
`2x^2-8x+5=0`
Find the nature of roots of the following quadratic equations:
`12x^2-4sqrt15x+5=0`
Find the values of k for which the given quadratic equation has real and distinct roots:
`9x^2+3kx+4=0`
If a and b are real and a ≠ b then show that the roots of the equation
`(a-b)x^2+5(a+b)x-2(a-b)=0`are equal and unequal.
Find the value of a for which the equation `(α-12)x^2+2(α-12)x+2=0` has equal roots.