Advertisements
Advertisements
प्रश्न
`x^2-4ax-b^2+4a^2=0`
उत्तर
The given equation is `x^2-4ax-b^2+4a^2=0`
Comparing it with `Ax^2+Bx^+C=0`
`A=1,B=-4a and C=-b^2+4a`
∴ Discriminant, `D=B^2-4AC=(-4a)^2-4xx1xx(-b^2+4a^2)=16a^2+4b^2-16a^2=4b^>0`
So, the given equation has real roots
Now, `sqrtD=sqrt4b^2=2b`
∴ `α=(-B+sqrtD)/(2a)=(-(-4a)+2b)/(2xx1)=(4a+2b)/2=2a+b`
`β=-(-B-sqrtD)/(2a)=(-(-4a)-2b)/(2xx1)=(4a-2b)/2=2a-b`
Hence,` (2a+b) and (2a-b)` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
x2 + 2x + 4 = 0
Write the discriminant of the following quadratic equations:
`sqrt3x^2+2sqrt2x-2sqrt3=0`
`3x^2-2x+8=0`
`x^2-4x-1=0`
`2x^2+ax-a^2=0`
`x^2-(sqrt3+1)x+sqrt3=0`
`3a^2x^2+8abx+4b^2=0`
`a^2b^2x^2-(4b^4-3a^4)x-12a^2b^2=0,a≠0 and b≠ 0`
Show that the roots of the equation `x^2+px-q^2=0` are real for all real values of p and q.
Find the values of k for which the given quadratic equation has real and distinct root:
`5x^2-kx+1=0`