Advertisements
Advertisements
प्रश्न
`x^2-(sqrt3+1)x+sqrt3=0`
उत्तर
The given equation is `x^2-(sqrt3+1)x+sqrt3=0`
Comparing it with `ax^2+bx+c=0` we get
`a=1, b=-(sqrt3+1) and c=sqrt3`
∴ Discriminant,
`D=b^2-4ac=[-(sqrt3+1)]^2-4xx1xxsqrt3=3+1+2sqrt3-4sqrt3=3-2sqrt3+1=-2sqrt3+1=(sqrt3-1)^2>0`
So, the given equation has real roots.
Now, `sqrtD=sqrt(sqrt3-1)^2=sqrt3-1`
∴ `α =(-b+sqrt(D))/(2a)=(-[-sqrt(3)+1]+[sqrt(3)-1])/(2xx1)=(sqrt(3)+1+sqrt(3)-1)/2=(2sqrt(3))/2=sqrt3`
β=`(-b-sqrt(D))/(2a)=(-[-sqrt(3)+1]+[sqrt(3)-1])/(2xx1)=(sqrt(3)+1-sqrt(3)-1)/2=2/2=1`
Hence, `sqrt3` and `1` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
`sqrt3x^2+2sqrt2x-2sqrt3=0`
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`sqrt2x^2+7x+5sqrt2=0`
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`2x^2-2sqrt2x+1=0`
`3x^2-2x+8=0`
`x^2-2ax-(4b^2-a^2)=0`
`x^2-(2b-1)x+(b^2-b-20)=0`
Show that the roots of the equation `x^2+px-q^2=0` are real for all real values of p and q.
For what values of p are the roots of the equation `4x^2+px+3=0` real and equal?
If a and b are real and a ≠ b then show that the roots of the equation
`(a-b)x^2+5(a+b)x-2(a-b)=0`are equal and unequal.
If the roots of the equation `(a^2+b^2)x^2-2(ac+bd)x+(c^2+d^2)=0`are equal, prove that `a/b=c/d`