Advertisements
Advertisements
प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`2x^2-2sqrt2x+1=0`
उत्तर
We have been given, `2x^2-2sqrt2x+1=0`
Now we also know that for an equation ax2 + bx + c = 0, the discriminant is given by the following equation:
D = b2 - 4ac
Now, according to the equation given to us, we have,a = 2, `b=-2sqrt2` and c = 1.
Therefore, the discriminant is given as,
`D=(-2sqrt2)^2-4(2)(1)`
= 8 - 8
= 0
Since, in order for a quadratic equation to have real roots, D ≥ 0.Here we find that the equation satisfies this condition, hence it has real and equal roots.
Now, the roots of an equation is given by the following equation,
`x=(-b+-sqrtD)/(2a)`
Therefore, the roots of the equation are given as follows,
`x=(-(-2sqrt2)+-sqrt0)/(2(2))`
`=(2sqrt2)/4`
`=1/sqrt2`
Therefore, the roots of the equation are real and equal and its value is `1/sqrt2`
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`2x^2+5sqrt3x+6=0`
`(2x-3) (3x+1)=0`
`(x-1)(2x-1)=0`
`sqrt3x^2-2sqrt2x-2sqrt3=0`
`2sqrt3x^2-5x+sqrt3=0`
`3x^2-2x+2=0.b`
`12abx^2-(9a^2-8b^2)x-6ab=0,` `Where a≠0 and b≠0`
Find the nonzero value of k for which the roots of the quadratic equation `9x^2-3kx+k=0` are real and equal.
If -4 is a root of the equation `x^2+2x+4p=0` find the value of k for the which the quadratic equation ` x^2+px(1+3k)+7(3+2k)=0` has equal roots.
Find the value of a for which the equation `(α-12)x^2+2(α-12)x+2=0` has equal roots.