Advertisements
Advertisements
प्रश्न
`12abx^2-(9a^2-8b^2)x-6ab=0,` `Where a≠0 and b≠0`
उत्तर
Given:
`12abx^2-(9a^2-8b^2)x-6ab=0,`
On comparing it with `Ax^2+Bx+C=0`, We get
`A=12ab, B=-(9a^2-8b^2)x-6ab=0`
Discriminant D is given by:
`D=B^2-4AC`
=`[-(9a^2-8b^2)]^2-4xx12abxx(-6ab)`
=`81a^4-144a^2b^2+64b^4+288a^2b^2`
=`81a^4+144a^2b^2+64b^2`
=`(9a^2+8b^2)^2>0`
Hence, the roots of the equation are equal.
Roots α and β are given by:
α=`(-B+sqrt(D))/(2A)=-([-9a^2-8b^2]+(sqrt(9a^2+8b^2)^2))/(2xx12ab)=(9a^2-8b^2+9a^2+8b^2)/(24ab)=(18a^2)/(24ab)=(3a)/(4b)`
`β=(-B-sqrt(D))/(2A)=-([-9a^2+8b^2]-(sqrt(9a^2-8b^2)^2))/(2xx12ab)=(9a^2-8b^2-9a^2-8b^2)/(24ab)=(-16a^2)/(24ab)=(-2b)/(3a)`
Thus, the roots of the equation are `(3a)/(4b)` and `(-2b)/(3a)`
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
(x − 1) (2x − 1) = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`2x^2-2sqrt2x+1=0`
Which of the following are the roots of `3x^2+2x-1=0?`
`1/3`
`(2x-3) (3x+1)=0`
`3/n x^2 n/m=1-2x`
`x^2-(2b-1)x+(b^2-b-20)=0`
For what value of k are the roots of the quadratic equation `kx(x-2sqrt5)+10=0`real and equal.
Find the nonzero value of k for which the roots of the quadratic equation `9x^2-3kx+k=0` are real and equal.
Find the values of k for which the given quadratic equation has real and distinct roots:
`kx^2+6x+1=0`
If a and b are real and a ≠ b then show that the roots of the equation
`(a-b)x^2+5(a+b)x-2(a-b)=0`are equal and unequal.