Advertisements
Advertisements
प्रश्न
`12abx^2-(9a^2-8b^2)x-6ab=0,` `Where a≠0 and b≠0`
उत्तर
Given:
`12abx^2-(9a^2-8b^2)x-6ab=0,`
On comparing it with `Ax^2+Bx+C=0`, We get
`A=12ab, B=-(9a^2-8b^2)x-6ab=0`
Discriminant D is given by:
`D=B^2-4AC`
=`[-(9a^2-8b^2)]^2-4xx12abxx(-6ab)`
=`81a^4-144a^2b^2+64b^4+288a^2b^2`
=`81a^4+144a^2b^2+64b^2`
=`(9a^2+8b^2)^2>0`
Hence, the roots of the equation are equal.
Roots α and β are given by:
α=`(-B+sqrt(D))/(2A)=-([-9a^2-8b^2]+(sqrt(9a^2+8b^2)^2))/(2xx12ab)=(9a^2-8b^2+9a^2+8b^2)/(24ab)=(18a^2)/(24ab)=(3a)/(4b)`
`β=(-B-sqrt(D))/(2A)=-([-9a^2+8b^2]-(sqrt(9a^2-8b^2)^2))/(2xx12ab)=(9a^2-8b^2-9a^2-8b^2)/(24ab)=(-16a^2)/(24ab)=(-2b)/(3a)`
Thus, the roots of the equation are `(3a)/(4b)` and `(-2b)/(3a)`
APPEARS IN
संबंधित प्रश्न
`(2x-3) (3x+1)=0`
`sqrt2x^2+7+5sqrt2=0`
`sqrt3x^2+10x-8sqrt3=0`
`sqrt3x^2-2sqrt2x-2sqrt3=0`
Find the nature of roots of the following quadratic equations:
`x^2-x+2=0`
Find the values of k for which the quadratic equation `(3k+1)x^2+2(k+1)x+1=0` has real and equal roots.
Find the values of p for which the quadratic equation `(p+1)x^2-6(p+1)x+3(p+9)=0` `p≠-11`has equal roots. Hence find the roots of the equation.
If -5 is a root of the quadratic equation `2x^2+px-15=0` and the quadratic equation `p(x^2+x)+k=0` 0has equal roots, find the value of k.
If -4 is a root of the equation `x^2+2x+4p=0` find the value of k for the which the quadratic equation ` x^2+px(1+3k)+7(3+2k)=0` has equal roots.
If the quadratic equation `(1+m^2)x^2+2mcx+(c^2-a^2)=0` has equal roots, prove that `c^2=a^2(1+m^2)`