Advertisements
Advertisements
प्रश्न
If -4 is a root of the equation `x^2+2x+4p=0` find the value of k for the which the quadratic equation ` x^2+px(1+3k)+7(3+2k)=0` has equal roots.
उत्तर
It is given that -4 is a root of the quadratic equation` x^2+2x+4p=0`
∴`(-4)^2+2xx(-4)+4p=0`
⇒`16-8+4p=0`
⇒`4p+8=0`
⇒`p=-2`
The equation `x^2+px(1+3k)+7(3+2k)=0` has real roots`
∴` D=0`
⇒ `[p(1+3k)]^2-4xx1xx7(3+2k)=0`
⇒ `[-2(1+3k)]^2-28(3+2k)=0`
⇒`4(1+6k+9k^2)-28(3+2k)=0`
⇒`4(1+6k+9k^2-21-14k)=0`
⇒ `9k^2-8k-20=0`
⇒`9k^2-18k+10(k-2)=0`
⇒`(k-2)(9k+10)=0`
⇒`k-2=0 or 9k+10=0`
⇒ `k=2 or k=-10/9`
Hence, the required value of k is `2 or -10/9`
APPEARS IN
संबंधित प्रश्न
If the roots of the equation (a2 + b2) x2 – 2(ac + bd) x + (c2 + d2) = 0 are equal, prove that `a/b = c/d`
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`sqrt2x^2+7x+5sqrt2=0`
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3x2 - 5x + 2 = 0
`2x^2-2sqrt2x+1=0`
`sqrt3x^2+10x-8sqrt3=0`
`sqrt3x^2-2sqrt2x-2sqrt3=0`
`3x^2-2sqrt6x+2=0`
`x^2-(sqrt3+1)x+sqrt3=0`
`4x^2-4bx-(a^2-b^2)=0`
If 3 is a root of the quadratic equation` x^2-x+k=0` find the value of p so that the roots of the equation `x^2+2kx+(k^2+2k+p)=0` are equal.