Advertisements
Advertisements
प्रश्न
If -4 is a root of the equation `x^2+2x+4p=0` find the value of k for the which the quadratic equation ` x^2+px(1+3k)+7(3+2k)=0` has equal roots.
उत्तर
It is given that -4 is a root of the quadratic equation` x^2+2x+4p=0`
∴`(-4)^2+2xx(-4)+4p=0`
⇒`16-8+4p=0`
⇒`4p+8=0`
⇒`p=-2`
The equation `x^2+px(1+3k)+7(3+2k)=0` has real roots`
∴` D=0`
⇒ `[p(1+3k)]^2-4xx1xx7(3+2k)=0`
⇒ `[-2(1+3k)]^2-28(3+2k)=0`
⇒`4(1+6k+9k^2)-28(3+2k)=0`
⇒`4(1+6k+9k^2-21-14k)=0`
⇒ `9k^2-8k-20=0`
⇒`9k^2-18k+10(k-2)=0`
⇒`(k-2)(9k+10)=0`
⇒`k-2=0 or 9k+10=0`
⇒ `k=2 or k=-10/9`
Hence, the required value of k is `2 or -10/9`
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3a2x2 + 8abx + 4b2 = 0, a ≠ 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`3x^2+2sqrt5x-5=0`
`(x-1)(2x-1)=0`
`25x^2+30x+7=0`
`sqrt3x^2-2sqrt2x-2sqrt3=0`
`2x^2+5sqrt3x+6=0`
`x^2+6x-(a^2+2a-8)=0`
Find the nature of roots of the following quadratic equations:
`x^2-x+2=0`
If the quadratic equation `(1+m^2)x^2+2mcx+(c^2-a^2)=0` has equal roots, prove that `c^2=a^2(1+m^2)`
For what value of k, are the roots of the quadratic equation kx (x − 2) + 6 = 0 equal ?