Advertisements
Advertisements
प्रश्न
`25x^2+30x+7=0`
उत्तर
Given:
`25x^2+30x+7=0`
On comparing it with `ax^2+bx+x=0`
a = 25,b = 30 and c = 7
Discriminant D is given by:
`D=(b^2-4ac)`
=`30^2-4xx25xx7`
=`900-700`
=`200`
=`200`
=`200>0`
Hence, the roots of the equation are real.
Roots α and β are given by:
`α=(-b+sqrt(D))/(2a)=(-30+sqrt(200))/(2xx25)=(-30+10sqrt(20))/50=(10(-3+sqrt(2)))/50=((-3+sqrt(2)))/5`
`β=(-b-sqrt(D))/(2a)=(-30-sqrt(200))/(2xx25)=(-30-10sqrt(20))/50=(10(-3-sqrt(2)))/50=((-3-sqrt(2)))/5`
Thus, the roots of the equation are `((-3+sqrt(2)))/5` and `((-3-sqrt(2)))/5`
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
(x − 1) (2x − 1) = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`sqrt3x^2+10x-8sqrt3=0`
`(x-1)(2x-1)=0`
`x+1/x=3,x≠0`
`x^2+5x-(a^+a-6)=0`
`4x^2-4a^2x+(a^4-b^4)=0`
Find the nature of roots of the following quadratic equations:
`2x^2-8x+5=0`
For what values of p are the roots of the equation `4x^2+px+3=0` real and equal?
Find the values of p for which the quadratic equation `(p+1)x^2-6(p+1)x+3(p+9)=0` `p≠-11`has equal roots. Hence find the roots of the equation.
Solve for x: \[\frac{1}{x - 3} - \frac{1}{x + 5} = \frac{1}{6}, x \neq 3, - 5\]