Advertisements
Advertisements
प्रश्न
`x^2+5x-(a^+a-6)=0`
उत्तर
The given equation is `x^2+5x-(a^2+a-6)=0`
Comparing it with `Ax^2+Bx+C=0`
`A=1,B=5 and C=-(a^2+a-6)`
∴ Discriminant, D =
`B^2-4AC=5^2-4xx1xx[-(a^2+a-6)]=25+4a^2+4a-24=4a^2+4a^2+4a+1`
=`(2a+1)^2>0`
So, the given equation has real roots
Now, `sqrtD=sqrt((2a+1))^2=2a+1`
∴`α=(-B+sqrtD)/(2A)=(-5+2a+1)/(2xx1)=(2a-4)/2=a-2`
`β=(-B-sqrtD)/(2A)=(-5-2a+1)/(2xx1)=(-2a-6)/2=a-2=-a-3=-(a+3)`
Hence, (a-2) and -(a+3) are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
x2 + 2x + 4 = 0
Write the discriminant of the following quadratic equations:
3x2 + 2x + k = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3x2 - 2x + 2 = 0
Solve for x
`x+1/x=3`, x ≠ 0
`x^2-4x-1=0`
`2x^2-2sqrt2x+1=0`
Find the nature of roots of the following quadratic equations:
` 3x^2-2sqrt6x+2=0`
A two-digit number is 4 times the sum of its digits and twice the product of digits. Find the number.
For what values of k, the roots of the quadratic equation (k + 4) x2 + (k + 1) x + 1 = 0 are equal ?
Solve for x: \[\frac{1}{x - 3} - \frac{1}{x + 5} = \frac{1}{6}, x \neq 3, - 5\]