Advertisements
Advertisements
प्रश्न
`x^2+5x-(a^+a-6)=0`
उत्तर
The given equation is `x^2+5x-(a^2+a-6)=0`
Comparing it with `Ax^2+Bx+C=0`
`A=1,B=5 and C=-(a^2+a-6)`
∴ Discriminant, D =
`B^2-4AC=5^2-4xx1xx[-(a^2+a-6)]=25+4a^2+4a-24=4a^2+4a^2+4a+1`
=`(2a+1)^2>0`
So, the given equation has real roots
Now, `sqrtD=sqrt((2a+1))^2=2a+1`
∴`α=(-B+sqrtD)/(2A)=(-5+2a+1)/(2xx1)=(2a-4)/2=a-2`
`β=(-B-sqrtD)/(2A)=(-5-2a+1)/(2xx1)=(-2a-6)/2=a-2=-a-3=-(a+3)`
Hence, (a-2) and -(a+3) are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
16x2 = 24x + 1
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3x2 - 2x + 2 = 0
Which of the following are the roots of `3x^2+2x-1=0?`
`1/3`
`(x-1)(2x-1)=0`
`11-x=2x^2`
`2x^2+6sqrt3x-60=0`
`4sqrt3x^2+5x-2sqrt3=0`
`x^2+x+2=0`
Find the nature of roots of the following quadratic equations:
`12x^2-4sqrt15x+5=0`
Find the values of k for which the given quadratic equation has real and distinct roots:
`kx^2+6x+1=0`