Advertisements
Advertisements
प्रश्न
`x^2-4ax-b^2+4a^2=0`
उत्तर
The given equation is `x^2-4ax-b^2+4a^2=0`
Comparing it with `Ax^2+Bx^+C=0`
`A=1,B=-4a and C=-b^2+4a`
∴ Discriminant, `D=B^2-4AC=(-4a)^2-4xx1xx(-b^2+4a^2)=16a^2+4b^2-16a^2=4b^>0`
So, the given equation has real roots
Now, `sqrtD=sqrt4b^2=2b`
∴ `α=(-B+sqrtD)/(2a)=(-(-4a)+2b)/(2xx1)=(4a+2b)/2=2a+b`
`β=-(-B-sqrtD)/(2a)=(-(-4a)-2b)/(2xx1)=(4a-2b)/2=2a-b`
Hence,` (2a+b) and (2a-b)` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
4x2 - 3kx + 1 = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3x2 - 2x + 2 = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`2x^2-2sqrt6x+3=0`
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`sqrt2x^2+7x+5sqrt2=0`
Solve for x
`x+1/x=3`, x ≠ 0
`3x^2-2x+2=0.b`
`x+1/x=3,x≠0`
`36x^2-12ax+(a^2-b^2)=0`
`4x^2-4bx-(a^2-b^2)=0`
If 3 is a root of the quadratic equation` x^2-x+k=0` find the value of p so that the roots of the equation `x^2+2kx+(k^2+2k+p)=0` are equal.