Advertisements
Advertisements
प्रश्न
`x+1/x=3,x≠0`
उत्तर
The given equation is
`x+1/x=3,x≠0`
⇒` (x^2+1)/x=3 `
⇒ `x^2+1=3x`
⇒`x^2-3x+1=0`
This equation is of the form `ax^2+bx+c=0,` where, `a=1, b=-3 and c=1`
∴ Discriminant,` D=b^2-4ac=(-3)^2-4xx1xx1=9-4=5>0`
So, the given equation has real roots.
Now, `sqrtD=sqrt5`
∴`a=(-b+sqrtD)/(2a)=(-(-3)+sqrt5)/(2xx1)=(3+sqrt5)/2`
β=(-b-sqrtD)/(2a)=(-(-3)-sqrt5)/(2xx1)=(3-sqrt5)/2`
Hence, `(3+sqrt5)/2` and `(3-sqrt5)/2` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Solve for x
`(x-1)/(x-2)+(x-3)/(x-4)=3 1/3`; x ≠ 2, 4
Find the value of a and b for which `x=3/4`and `x =-2` are the roots of the equation `ax^2+bx-6=0`
`x^2-4x-1=0`
`2sqrt3x^2-5x+sqrt3=0`
`2x^2+5sqrt3x+6=0`
`3a^2x^2+8abx+4b^2=0`
`12abx^2-(9a^2-8b^2)x-6ab=0,` `Where a≠0 and b≠0`
For what values of p are the roots of the equation `4x^2+px+3=0` real and equal?
A two-digit number is 4 times the sum of its digits and twice the product of digits. Find the number.
Find the discriminant of the quadratic equation 4x2 – 5 = 0 and hence comment on the nature of roots of the equation.