Advertisements
Advertisements
प्रश्न
`2x^2+5sqrt3x+6=0`
उत्तर
The given equation is `2x^2+5sqrt3x+6=0`
Comparing it with `ax^2+bx+c=0,` we get
`a=2, b=5sqrt3 and c=6`
∴ Discriminant, `D=b^2-4ac=(5sqrt3)^2-4xx2xx6=75-48=27>0`
So, the given equation has real roots.
Now, `sqrtD=sqrt27=3sqrt3`
∴α=`(-b+sqrtD)/(2a)=(-5sqrt(3)+3sqrt(3))/(2xx2)=(-2sqrt3)/4=-sqrt3/2`
`β=(-b+sqrtD)/(2a)=(-5sqrt(3)+3sqrt(3))/(2xx2)=(-8sqrt3)/4=-2sqrt3`
Hence, `-sqrt3/2`and `-2sqrt3` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
`3x^2-243=0`
`11-x=2x^2`
`x^2-6x+4=0`
`x^2-(sqrt3+1)x+sqrt3=0`
`36x^2-12ax+(a^2-b^2)=0`
`x^2+6x-(a^2+2a-8)=0`
Find the nature of roots of the following quadratic equations:
`2x^2-8x+5=0`
Find the nature of roots of the following quadratic equations:
`5x^2-4x+1=0`
If the roots of the equations `ax^2+2bx+c=0` and `bx^2-2sqrtacx+b=0`are simultaneously real then prove that `b^2=ac`
A two-digit number is such that the product of its digits is 14. If 45 is added to the number, the digit interchange their places. Find the number.