Advertisements
Advertisements
प्रश्न
If the quadratic equation `(1+m^2)x^2+2mcx+(c^2-a^2)=0` has equal roots, prove that `c^2=a^2(1+m^2)`
उत्तर
Given:
`(1+m^2)x^2+2mcx+(c^2-a^2)=0`
Here,
`a=(1+m^2), b=2mc and c=(c^2-a^2)`
It is given that the roots of the equation are equal; therefore, we have:
`D=0`
⇒` (b^2-4ac)=0`
⇒ `(2m)^2-4xx(1+m^2)xx(c^2-a^2)=0`
⇒`4m^2c^2-4(c^2-a^2+m^2c^2-m^2a^2)=0`
⇒` 4m^2c^2-4c^2+4a^2-4m^2c^2+4m^2a^2=0`
⇒`-4c^2+4a+4m^2a^2=0`
⇒`a^2+m^2a^2=c^2`
⇒`a^2(1+m^2)=c^2`
⇒`c^2=a^2(1+m^2)`
Hence proved
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
x2 - 2x + 1 = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3x2 - 5x + 2 = 0
`3x^2-243=0`
` 2x^2-7x+6=0`
`2x^2+x-4=0`
`3a^2x^2+8abx+4b^2=0`
Find the nature of roots of the following quadratic equations:
`5x^2-4x+1=0`
If -5 is a root of the quadratic equation `2x^2+px-15=0` and the quadratic equation `p(x^2+x)+k=0` 0has equal roots, find the value of k.
If 3 is a root of the quadratic equation` x^2-x+k=0` find the value of p so that the roots of the equation `x^2+2kx+(k^2+2k+p)=0` are equal.
Find the value of p for which the quadratic equation `2x^2+px+8=0` has real roots.