हिंदी

If the Quadratic Equation `(1+M^2)X^2+2mcx+(C^2-a^2)=0` Has Equal Roots, Prove That `C^2=A^2(1+M^2)` - Mathematics

Advertisements
Advertisements

प्रश्न

If the quadratic equation `(1+m^2)x^2+2mcx+(c^2-a^2)=0` has equal roots, prove that  `c^2=a^2(1+m^2)`  

उत्तर

Given: 

`(1+m^2)x^2+2mcx+(c^2-a^2)=0` 

Here, 

`a=(1+m^2), b=2mc and c=(c^2-a^2)` 

It is given that the roots of the equation are equal; therefore, we have: 

`D=0` 

⇒` (b^2-4ac)=0` 

⇒ `(2m)^2-4xx(1+m^2)xx(c^2-a^2)=0` 

⇒`4m^2c^2-4(c^2-a^2+m^2c^2-m^2a^2)=0` 

⇒` 4m^2c^2-4c^2+4a^2-4m^2c^2+4m^2a^2=0` 

⇒`-4c^2+4a+4m^2a^2=0` 

⇒`a^2+m^2a^2=c^2` 

⇒`a^2(1+m^2)=c^2` 

⇒`c^2=a^2(1+m^2)` 

Hence proved 

shaalaa.com
Relationship Between Discriminant and Nature of Roots
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Quadratic Equations - Exercises 4

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 10 Quadratic Equations
Exercises 4 | Q 14
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×