Advertisements
Advertisements
प्रश्न
If -5 is a root of the quadratic equation `2x^2+px-15=0` and the quadratic equation `p(x^2+x)+k=0` 0has equal roots, find the value of k.
उत्तर
It is given that -5 is a root of the quadratic equation `2x^2+px-15=0`
∴ `2(-5)^2+pxx(-5)-15=0`
⇒ `-5p+35=0`
⇒` p=7`
The roots of the equation` px^2+px+k= 0=0` are equal.
∴ `D=0 `
⇒ `p^2-4pk=0`
⇒`(7)^2-4xx7xxk=0`
⇒`49-28k=0`
⇒` k=49/28=7/4`
Thus, the value of k is `7/4`
APPEARS IN
संबंधित प्रश्न
Solve for x:
`1/x - 1/(x-2)=3`, x ≠ 0, 2
Which of the following are the roots of` 3x^2+2x-1=0?`
-1
`sqrt3x^2+2sqrt2x-2sqrt3=0`
`x^2-6x+4=0`
`2x^2+x-4=0`
`sqrt3x^2+10x-8sqrt3=0`
`x^2-(sqrt3+1)x+sqrt3=0`
For what value of k are the roots of the quadratic equation `kx(x-2sqrt5)+10=0`real and equal.
If the roots of the equations `ax^2+2bx+c=0` and `bx^2-2sqrtacx+b=0`are simultaneously real then prove that `b^2=ac`
Solve for x: \[\frac{1}{x - 3} - \frac{1}{x + 5} = \frac{1}{6}, x \neq 3, - 5\]