Advertisements
Advertisements
प्रश्न
`sqrt3x^2+10x-8sqrt3=0`
उत्तर
Given:
`sqrt3x^2+10x-8sqrt3=0`
On comparing it with `ax^2+bx+x=0` we get;
`a=sqrt3,b=10 and c=-8sqrt3`
Discriminant D is given by:
`D=(b^2-4ac)`
=`(10)^2-4xxsqrt3xx(-8sqrt3)`
=`100+96`
=`196>0`
Hence, the roots of the equation are real.
Roots α and β are given by:
`α=(-b+sqrt(D))/(2a)=(-10+sqrt(196))/(2sqrt(3))=(-10+14)/(2sqrt(3))=4/(2sqrt3)=2/sqrt(3)=2/sqrt(3)xxsqrt3/sqrt3=(2sqrt(3))/3`
β=`(-b+sqrt(D))/(2a)=(-10+sqrt(196))/(2sqrt(3))=(-10+14)/(2sqrt(3))=(-24)/(2sqrt(3))=(-12)/(2sqrt(3))(-12)/sqrt(3)xxsqrt3/sqrt3=(-12sqrt(3))/3=4sqrt(3)`
Thus, the roots of the equation are `(2sqrt3)/3` and `-4sqrt3`
APPEARS IN
संबंधित प्रश्न
Solve for x
`x+1/x=3`, x ≠ 0
`sqrt2x^2+7+5sqrt2=0`
`sqrt3x^2-2sqrt2x-2sqrt3=0`
`x-1/x=3,x≠0`
`x^2-2ax-(4b^2-a^2)=0`
`x^2+6x-(a^2+2a-8)=0`
`x^2+5x-(a^+a-6)=0`
Find the nonzero value of k for which the roots of the quadratic equation `9x^2-3kx+k=0` are real and equal.
Find the values of k for which the given quadratic equation has real and distinct roots:
`9x^2+3kx+4=0`
Find the values of k for which the given quadratic equation has real and distinct root:
`5x^2-kx+1=0`