Advertisements
Advertisements
प्रश्न
If the roots of the equation (a2 + b2) x2 – 2(ac + bd) x + (c2 + d2) = 0 are equal, prove that `a/b = c/d`
उत्तर
The given quadratic equation is (a2 + b2)x2 − 2(ac + bd)x + (c2 + d2) = 0.
If the roots of given quadratic equation are equal, then its discriminant is zero.
`:. D = [-2(ac + bd)^2] - 4(a^2 + b^2)(c^2 + d^2) = 0`
`=> 4(a^2c^2+ b^2d^2 + 2abcd) - 4(a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2) = 0`
`=> 4(a^2c^2 + b^2d^2 + 2abcd - a^2c^2 - a^2d^2 - b^2c^2 - b^2d^2) = 0`
`=>2abcd - a^2d^2 - b^2c^2 = 0`
`=> a^2d^2 + b^2c^2 - 2abcd = 0`
`=>(ad - bc)^2 = 0`
⇒ ad - bc = 0
⇒ad = bc
`=> a/b = c/d`
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
x2 - x + 1 = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`3x^2+2sqrt5x-5=0`
Find the value of a and b for which `x=3/4`and `x =-2` are the roots of the equation `ax^2+bx-6=0`
`4x^2+5x=0`
`(x-1)(2x-1)=0`
`x^2-(sqrt3+1)x+sqrt3=0`
`x^2+6x-(a^2+2a-8)=0`
Find the value of p for which the quadratic equation `(2p+1)x^2-(7p+2)x+(7p-3)=0` has real and equal roots.
If the roots of the quadratic equation `(c^2-ab)x^2-2(a^2-bc)x+(b^2-ac)=0` are real and equal, show that either a=0 or `(a^3+b^3+c^3=3abc)`
If the roots of the equation `(a^2+b^2)x^2-2(ac+bd)x+(c^2+d^2)=0`are equal, prove that `a/b=c/d`