Advertisements
Advertisements
प्रश्न
`x^2-(sqrt3+1)x+sqrt3=0`
उत्तर
The given equation is `x^2-(sqrt3+1)x+sqrt3=0`
Comparing it with `ax^2+bx+c=0` we get
`a=1, b=-(sqrt3+1) and c=sqrt3`
∴ Discriminant,
`D=b^2-4ac=[-(sqrt3+1)]^2-4xx1xxsqrt3=3+1+2sqrt3-4sqrt3=3-2sqrt3+1=-2sqrt3+1=(sqrt3-1)^2>0`
So, the given equation has real roots.
Now, `sqrtD=sqrt(sqrt3-1)^2=sqrt3-1`
∴ `α =(-b+sqrt(D))/(2a)=(-[-sqrt(3)+1]+[sqrt(3)-1])/(2xx1)=(sqrt(3)+1+sqrt(3)-1)/2=(2sqrt(3))/2=sqrt3`
β=`(-b-sqrt(D))/(2a)=(-[-sqrt(3)+1]+[sqrt(3)-1])/(2xx1)=(sqrt(3)+1-sqrt(3)-1)/2=2/2=1`
Hence, `sqrt3` and `1` are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
If the roots of the equation (a2 + b2) x2 – 2(ac + bd) x + (c2 + d2) = 0 are equal, prove that `a/b = c/d`
Write the discriminant of the following quadratic equations:
(x − 1) (2x − 1) = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
x2 + x + 2 = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3x2 - 5x + 2 = 0
`sqrt3x^2+2sqrt2x-2sqrt3=0`
Find the roots of the each of the following equations, if they exist, by applying the quadratic formula:
`x^2-4x-1=0`
`4sqrt3x^2+5x-2sqrt3=0`
`2x^2+ax-a^2=0`
For what values of p are the roots of the equation `4x^2+px+3=0` real and equal?
If the quadratic equation x2 + 4x + k = 0 has real and equal roots, then ______.