Advertisements
Advertisements
Question
`x^2-(sqrt3+1)x+sqrt3=0`
Solution
The given equation is `x^2-(sqrt3+1)x+sqrt3=0`
Comparing it with `ax^2+bx+c=0` we get
`a=1, b=-(sqrt3+1) and c=sqrt3`
∴ Discriminant,
`D=b^2-4ac=[-(sqrt3+1)]^2-4xx1xxsqrt3=3+1+2sqrt3-4sqrt3=3-2sqrt3+1=-2sqrt3+1=(sqrt3-1)^2>0`
So, the given equation has real roots.
Now, `sqrtD=sqrt(sqrt3-1)^2=sqrt3-1`
∴ `α =(-b+sqrt(D))/(2a)=(-[-sqrt(3)+1]+[sqrt(3)-1])/(2xx1)=(sqrt(3)+1+sqrt(3)-1)/2=(2sqrt(3))/2=sqrt3`
β=`(-b-sqrt(D))/(2a)=(-[-sqrt(3)+1]+[sqrt(3)-1])/(2xx1)=(sqrt(3)+1-sqrt(3)-1)/2=2/2=1`
Hence, `sqrt3` and `1` are the roots of the given equation.
APPEARS IN
RELATED QUESTIONS
Solve for x
`x+1/x=3`, x ≠ 0
`2x^2+5sqrt3x+6=0`
`x-1/x=3,x≠0`
`x^2-2ax+(a^2-b^2)=0`
Find the nature of roots of the following quadratic equations:
`2x^2-8x+5=0`
If a and b are distinct real numbers, show that the quadratic equations
`2(a^2+b^2)x^2+2(a+b)x+1=0` has no real roots.
If -5 is a root of the quadratic equation `2x^2+px-15=0` and the quadratic equation `p(x^2+x)+k=0` 0has equal roots, find the value of k.
If 3 is a root of the quadratic equation` x^2-x+k=0` find the value of p so that the roots of the equation `x^2+2kx+(k^2+2k+p)=0` are equal.
If the roots of the quadratic equation `(c^2-ab)x^2-2(a^2-bc)x+(b^2-ac)=0` are real and equal, show that either a=0 or `(a^3+b^3+c^3=3abc)`
For what value of k, are the roots of the quadratic equation kx (x − 2) + 6 = 0 equal ?